Interference Queueing Networks on Grids

Sergey Foss

Joint work with Abishek Sankararaman and François Baccelli

St. Petersburg, Euler Centre

19 September, 2019

Ad-Hoc Wireless Networks

Networks without a centralized infrastructure

Examples -

1) Overlaid Device-to-Device (D2D) Networks

Ad-Hoc Wireless Networks

Networks without a centralized infrastructure

Examples -

1) Overlaid Device-to-Device (D2D) Networks

2) Internet of Things - Sensors and monitors

Smart Ring

Smart Glasses

Wireless devices everywhere!

Spatio-Temporal Dynamics

Wireless Spectrum is a space-time shared resource

Spatial Component - Interference

Spatio-Temporal Dynamics

Wireless Spectrum is a space-time shared resource

Spatial Component - Interference

Temporal Component - Traffic Patterns

Understanding the interplay of space-time interactions is crucial for design

Prior Work

Ad-hoc networks have been studied for a long time! However, little is understood on the spatio-temporal interactions

1. Static spatial setting

[Gupta et al. 00][Baccelli et al. 03][Andrews et al. 07][De-Veciana et al. 08] [Haenggi et al. 09] (Does not precisely capture interactions through traffic arrivals)

2. Flow-based queuing models

[Bonald et al. 06][Srikant et al. 07][Shah et al, 09][Shakkottai et al. 07] [De-Veciana et al. 08] (Does not capture precisely, the information-theoretic interactions)

We provide a framework to capture interactions in space and time

Schematic - Spatial Birth-Death Process

Protocol - A link transmits whenever they have a file by treating interference as noise

Schematic - Spatial Birth-Death Process

Protocol - A link transmits whenever they have a file by treating interference as noise

When does this protocol "work"?

Wireless Dynamics on Grids

Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid

Wireless Dynamics on Grids

Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid

Each wireless link (Tx-Rx pair) is abstracted as a point

Links (points) 'arrive' uniformly in space and transmit

Links exit after completion of a file transfer

Wireless Dynamics on Grids

Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid

Each wireless link (Tx-Rx pair) is abstracted as a point

Links (points) 'arrive' uniformly in space and transmit

Links exit after completion of a file transfer

Instantaneous rate of transfer - Linearization of Shannon capacity formula

Interference as Noise

A warm up to the Model

 $x_i(t) \in \mathbb{N}$ Number of links in cell $i \in \mathbb{Z}$ at time $t \ge 0$

 $\{x_i(t)\}_{i\in\mathbb{Z}}$ Queue lengths at time $t\geq 0$

A warm up to the Model

 $x_i(t) \in \mathbb{N}$ Number of links in cell $i \in \mathbb{Z}$ at time $t \geq 0$

 $\{x_i(t)\}_{i\in\mathbb{Z}}$ Queue lengths at time $t\geq 0$

Independent Poisson Arrivals

A warm up to the Model

 $x_i(t) \in \mathbb{N}$ Number of links in cell $i \in \mathbb{Z}$ at time $t \ge 0$

 $\{x_i(t)\}_{i\in\mathbb{Z}}$ Queue lengths at time $t\geq 0$

Independent Poisson Arrivals

Rate of departure from queue $i \in \mathbb{Z}$ at time t

$$\frac{x_i(t)}{x_{i-1}(t) + x_i(t) + x_{i+1}(t)}$$

If 'neighboring' queues are large, instantaneous departure rate is small.

 $\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$ Queue Lengths

 $\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$ Queue Lengths Interference Sequence $\{a_i\}_{i\in\mathbb{Z}^d}$

$$\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$$
 Queue Lengths

Interference Sequence $\{a_i\}_{i\in\mathbb{Z}^d}$

$$a_i \ge 0 \ \forall i \in \mathbb{Z}^d \qquad a_i = a_{-i} \ \forall i \in \mathbb{Z}^d \qquad L = \sup\{||i||_{\infty} : a_i > 0\} < \infty$$

$$a_0 = 1$$

$$a_i = a_{-i} \ \forall i \in \mathbb{Z}^d$$

$$L = \sup\{||i||_{\infty} : a_i > 0\} < \infty$$

Positivity

Symmetry

Finite Support

Interference at queue i
$$-\sum_{j\in\mathbb{Z}^d}a_jx_{i-j}(t)$$

SIR at a customer in queue i at time t $\frac{1}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)}$

$$\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$$
 Queue Lengths

Interference Sequence $\{a_i\}_{i\in\mathbb{Z}^d}$

$$a_i \geq 0 \ \forall i \in \mathbb{Z}^d \qquad a_i = a_{-i} \ \forall i \in \mathbb{Z}^d \qquad L = \sup\{||i||_{\infty} : a_i > 0\} < \infty$$

$$a_0 = 1$$

$$a_i = a_{-i} \ \forall i \in \mathbb{Z}^d$$

$$L = \sup\{||i||_{\infty} : a_i > 0\} < \infty$$

Positivity

Symmetry

Finite Support

Interference at queue i
$$-\sum_{j\in\mathbb{Z}^d}a_jx_{i-j}(t)$$

SIR at a customer in queue i at time t $\frac{1}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)}$

Rate of departure from any queue i at time t

$$\frac{x_i(t)}{\sum_{j\in\mathbb{Z}^d} a_j x_{i-j}(t)}$$

Interference Queueing Dynamics

$$\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$$
 Queue lengths at time $t\geq 0$

Independent rate λ Poisson arrivals

Rate of departure from queue $i \in \mathbb{Z}$ at time t $\frac{x_i(t)}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)}$

If 'neighboring' queues are large, instantaneous departure rate is small.

In the toy example, $a_i = 1$ if $|i| \le 1$ and $a_i = 0$ otherwise

Interference Queueing Dynamics

 $\{x_i(t)\}_{i\in\mathbb{Z}^d}\in\mathbb{N}^{\mathbb{Z}^d}$ Queue lengths at time $t\geq 0$

Independent rate λ Poisson arrivals

Rate of departure from queue $i \in \mathbb{Z}$ at time t $\frac{x_i(t)}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)}$

If 'neighboring' queues are large, instantaneous departure rate is small.

Questions -

- 1) For what λ and $\{a_i\}_{i\in\mathbb{Z}^d}$, is the process $\{x_i(t)\}_{i\in\mathbb{Z}^d}$ 'stable'?
- 2) Characterize the steady state ??

Connection with Related Models

Few Papers discuss Infinite Queuing Networks

- 1) Kelbert-Kontsevich-Rybko: *On Jackson Networks on Denumerable Graphs*, 1988.
- 2) Foss, Chernova: On stability of polling models with infinite number of queues, 1996.
- 3) Borovkov-Korshunov-Schassberger: *Ergodicity of a polling network with an infinite number of stations*, 1999.
- 4) Baccelli-Foss: Poisson Hail on a Hot Ground, 2011.

Similarities to Interacting Particle System (Liggett, 1985). However, each particle (queue) has a countable number of states.

Main Results

1. Stability

If
$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$$
, then system is stable

Main Results

1. Stability

If
$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$$
, then system is stable

2. Moments

Let $\{y_i\}_{i\in\mathbb{Z}^d}$ be the minimal stationary solution to the dynamics

If
$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$$
, then $\mathbb{E}[y_0] = \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}$
If $\lambda \sum_{j \in \mathbb{Z}^d} a_j < \frac{2}{3}$ then $\mathbb{E}[y_0^2] < \infty$

[Shneer and Stolyar'18] established this for the entire stability range

In upcoming work by Abishek Sankararaman and Sayan Banerjee, exponential moments are shown to exist in the entire range

Intuition

Consider any local maximum queue i, i.e. $x_i(t) = \max\{x_{i-j}(t): a_j > 0\}$ Its instantaneous departure rate is $\frac{x_i(t)}{\sum_{j \in \mathbb{Z}^d} a_j x_{i-j}(t)} \ge \frac{1}{\sum_{j \in \mathbb{Z}^d} a_j}$

The arrival rate at every queue is λ

if $\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$, then this local maximum queue has negative drift

Intuition

Intuition

Stability -
$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$$

M/M/1

Fraction of solid balls

Monotonicity

If two initial conditions $\{x_i(0)\}_{i\in\mathbb{Z}^d}$ and $\{y_i(0)\}_{i\in\mathbb{Z}^d}$ s.t. for all $i\in\mathbb{Z}^d$ $x_i(0)\leq y_i(0)$, then there exists a coupling such that almost-surely $\forall t\geq 0$, $\forall i\in\mathbb{Z}^d$ $x_i(t)\leq y_i(t)$.

Monotonicity

If two initial conditions $\{x_i(0)\}_{i\in\mathbb{Z}^d}$ and $\{y_i(0)\}_{i\in\mathbb{Z}^d}$ s.t. for all $i\in\mathbb{Z}^d$ $x_i(0)\leq y_i(0)$, then there exists a coupling such that almost-surely $\forall t\geq 0$, $\forall i\in\mathbb{Z}^d$ $x_i(t)\leq y_i(t)$.

Proof Induction

Arrivals retain the ordering

Monotonicity

If two initial conditions $\{x_i(0)\}_{i\in\mathbb{Z}^d}$ and $\{y_i(0)\}_{i\in\mathbb{Z}^d}$ s.t. for all $i\in\mathbb{Z}^d$ $x_i(0)\leq y_i(0)$, then there exists a coupling such that almost-surely $\forall t\geq 0\;,\, \forall i\in\mathbb{Z}^d\; x_i(t)\leq y_i(t)$.

Proof Induction

Arrivals retain the ordering

Two queues are equal - higher interference system has smaller departure

Unequal queues - Retains ordering as at-most one customer departs

Proof Steps

- 1. Consider a spatial truncation finite dimensional
- 2. If $\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1 =>$ Stability

Max queue length - Lyapunov function

3. Rate Conservation Principle

$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1 \implies \mathbb{E}[y_0^{(n)}] = \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j} - o_n(1) \qquad \textit{Tightness of } \{y_0^{(n)}\}_{n \in \mathbb{N}}$$

Main Proof Idea - Stability

Two systems on $B \subset \mathbb{Z}^d$ with the same dynamics. All queues in B^{\complement} are frozen without activity.

- $\{y_i(t)\}_{i\in B}$: the set B is a torus.
- $\{z_i(t)\}_{i\in B}$: the set B has boundary effects.

Interference is lower at the boundaries.

Main Proof Idea - Stability

Two systems on $B \subset \mathbb{Z}^d$ with the same dynamics. All queues in $B^{\mathbb{C}}$ are frozen without activity.

- $\{y_i(t)\}_{i\in B}$: the set B is a torus.
- $\{z_i(t)\}_{i\in B}$: the set B has boundary effects.

Interference is lower at the boundaries.

$$\forall t \ \forall i \in B$$

- 1) $x_i(t) \ge z_i(t)$ 2) $y_i(t) \ge z_i(t)$

Monotonicity

Finite Torus System

 $\{y_i(t)\}_{i\in B}$ process on a torus.

Theorem - If $\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$, then $\{y_i(t)\}_{i \in B}$ is Positive Recurrent and the stationary distribution possess exponential moments. Furthermore, the mean queue length satisfies $\mathbb{E}[y_0(t)] = \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}$

Finite Torus System

 $\{y_i(t)\}_{i\in B}$ process on a torus.

Theorem - If $\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1$, then $\{y_i(t)\}_{i \in B}$ is Positive Recurrent and the stationary distribution possess exponential moments. Furthermore, the mean queue length satisfies $\mathbb{E}[y_0(t)] = \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}$

Proof Idea of Stability

$$\frac{d}{dt}y_i = \lambda - \frac{y_i}{\sum_{j \in \mathbb{Z}^d} a_j y_{(i-j)/B}(t)}$$

Fluid scale equation

Consider the maximal queue $i^*(t) := \arg \max_{i \in B} y_i(t)$

$$\frac{d}{dt}y_{i^*(t)} = \lambda - \frac{y_{i^*(t)}}{\sum_{j \in \mathbb{Z}^d} a_j y_{i^*(t) - j}(t)}$$

$$\leq \lambda - \frac{1}{\sum_{j \in \mathbb{Z}^d} a_j} < -\epsilon$$

This has negative drift

Can upper bound by a stable Single server queue.

Finite Torus System

Rate Conservation - "On Average what comes in is what goes out".

For Ex.
$$\lambda = \mathbb{E}\left[\frac{y_0(t)}{\sum_{j \in \mathbb{Z}^d} a_j y_{j/B}(t)} \mathbf{1}_{y_0(t)>0}\right]$$

Avg arrival rate equals avg departure rate.

Key Idea:

Consider
$$I(t):=y_0(t)\sum_{j\in\mathbb{Z}^d}a_jy_j(t)$$
 in stationarity and solve $\frac{d}{dt}\mathbb{E}[I(t)]=0$

Average increase due to arrivals -
$$\lambda + \lambda (\sum_{j \in \mathbb{Z}^d} a_j) \mathbb{E}[y_0(t)]$$

Average decrease due to departures - $\mathbb{E}[y_0(t)]$

Equating the two yields
$$\mathbb{E}[y_0(t)] \in \left\{ \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}, \infty \right\}$$

Proof Steps

- 1. Consider a spatial truncation finite dimensional
- 2. If $\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1 =>$ Stability

Max queue length - Lyapunov function

3. Rate Conservation Principle

$$\lambda \sum_{j \in \mathbb{Z}^d} a_j < 1 \implies \mathbb{E}[y_0^{(n)}] = \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j} - o_n(1) \qquad \textit{Tightness of } \{y_0^{(n)}\}_{n \in \mathbb{N}}$$

- 4. Switch of limits in time and space Coupling from the past
- 5. Monotone Convergence to yield the moment formula

Coupling From the Past

 $\{z_i(t)\}_{i\in B}$, process where the set B has boundary effects.

Monotonicity =>
$$x_i(t) \ge z_i(t)$$
 and $y_i(t) \ge z_i(t)$

Thus
$$\mathbb{E}[z_0(t)] \leq \frac{\lambda}{1-\lambda \sum_{j\in\mathbb{Z}^d} a_j}$$
 Uniformly in the size of B

Consider $B_n \nearrow \mathbb{Z}^d$ and corresponding stationary $z_0^{(n)}(0)$

Coupling From the Past

Let $B_n \nearrow \mathbb{Z}^d$. $z_{0,t}^{(n)}(0)$ - the queue length of queue 0 at time 0, when the truncated B_n system is started empty at time -t.

Notice
$$\forall t \geq 0$$
 $\lim_{n \to \infty} z_{0,t}^{(n)}(0) = x_{0,t}(0)$ Corollary of the construction Queues

Monotonicity =>

$$\lim_{t\to\infty} z_{0,t}^{(n)} := z_{0,\infty}^{(n)} \ \text{ and } \lim_{n\to\infty} z_{0,\infty}^{(n)} := z_{0,\infty}^{(\infty)} \ \text{ a.s.}$$

We know
$$\sup_{n \in \mathbb{N}} \mathbb{E}[z_{0,\infty}^{(n)}] \leq \frac{\lambda}{1 - \lambda \sum_{j \in \mathbb{Z}^d} a_j}$$

thus,
$$\mathbb{E}[z_{0,\infty}^{(\infty)}]<\infty$$

Coupling From the Past

Lemma - If $\lambda \sum_{j\in\mathbb{Z}^d} a_j < 1$, then $\exists N\in\mathbb{N}$ and $\exists T_N<\infty$ random such that

We know
$$\sup_{n\in\mathbb{N}}\mathbb{E}[z_{0,\infty}^{(n)}]\leq \frac{\lambda}{1-\lambda\sum_{j\in\mathbb{Z}^d}a_j}$$
. Thus $\mathbb{E}[x_{0,\infty}(0)]\leq \frac{\lambda}{1-\lambda\sum_{j\in\mathbb{Z}^d}a_j}$

Large Initial Conditions

Theorem

For every λ , there exists a probability distribution on $\mathbb N$ such that if the initial condition is $\{x_i(0)\}_{i\in\mathbb Z^d}$ i.i.d. from this distribution, then $\forall i\in\mathbb Z^d$, $\lim_{t\to\infty}x_i(t)=\infty$ almost-surely.

Large Initial Conditions

Theorem

For every λ , there exists a probability distribution on $\mathbb N$ such that if the initial condition is $\{x_i(0)\}_{i\in\mathbb Z^d}$ i.i.d. from this distribution, then $\forall i\in\mathbb Z^d$, $\lim_{t\to\infty}x_i(t)=\infty$ almost-surely

If "large" frozen boundary is present, then stationary queue length at 0 is also "large" with "high probability"

Convergence to Stationary Solutions

Because of the infinite barrier, all queues diverge to infinity at a linear rate

Convergence to Stationary Solutions

Since interested only in finite time t_i , can bring down the barrier to a finite value at a small penalty in probability

Convergence to Stationary Solutions

Since interested only in finite time t_i , can bring down the barrier to a finite value at a small penalty in probability

Borel-Cantelli to conclude the proof

Open Questions

How do correlations $k \to \mathbb{E}[y_0 y_k] - (\mathbb{E}[y_0]^2)$ decay?

d=1, n=51
$$\lambda = 0.1419, \lambda_c = 1/7$$

No propagation of chaos even in an infinite system!

Open Questions

<u>Uniqueness of Stationary Solution</u>

Existence/construction of other non-degenerate stationary solutions?

Convergence to Stationary Solution

Do other initial conditions apart from all empty converge to a stationary limit?

Prediction of bad outage events propagating from 'far out' in space

Thank You

Related Papers -

- 1) Interference Queueing Networks on Grids A. Sankararaman, F. Baccelli and S. Foss In Annals of Applied Probability, to appear https://arxiv.org/abs/1710.09797
- 2) Spatial Birth-Death Wireless Networks,
 A.Sankararaman and F. Baccelli
 In IEEE Transactions on Information Theory, 2017
 https://arxiv.org/abs/1604.07884