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Spatio-Temporal Dynamics

Wireless Spectrum is a space-time shared resource

Spatial Component - Interference @



Spatio-Temporal Dynamics

Wireless Spectrum is a space-time shared resource

Spatial Component - Interference @

Temporal Component - Traffic Patterns
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Understanding the interplay of space-time interactions is crucial for design



Prior Work

Ad-hoc networks have been studied for a long time !

However, little is understood on the spatio-temporal interactions

1. Static spatial setting

[Gupta et al. 00][Baccelli et al. 03][Andrews et al. 07][De-Veciana et al. 08]
[Haenggqi et al. 09]
(Does not precisely capture interactions through traffic arrivals)

2. Flow-based queuing models

A\ 4

[Bonald et al. 06][Srikant et al. 07][Shah et al, 09][Shakkottai et al. 07]
[De-Veciana et al. 08]
(Does not capture precisely, the information-theoretic interactions)

We provide a framework to capture interactions in space and time



Schematic - Spatial Birth-Death Process

Protocol - A link transmits whenever they have a file by treating interference as noise



Schematic - Spatial Birth-Death Process

Protocol - A link transmits whenever they have a file by treating interference as noise

\4

Increasing Time o ‘)

When does this protocol “work” ?



Wireless Dynamics on Grids
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Discrete Space - d dimensional grid
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Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid

Each wireless link (Tx-Rx pair) is abstracted as a point

Links (points) ‘arrive’ uniformly in space and transmit

Links exit after completion of a file transfer



Wireless Dynamics on Grids

Protocol - A link transmits whenever they have a file by treating interference as noise

Discrete Space - d dimensional grid

Each wireless link (Tx-Rx pair) is abstracted as a point

Links (points) ‘arrive’ uniformly in space and transmit

Links exit after completion of a file transfer

Instantaneous rate of transfer - Linearization of Shannon capacity formula

Interference as Noise



A warm up to the Model

z;—1(t) (1) Tit1(?)
z;(t) € N Number of links in cell : € Z at time t > 0

{%‘(t)}iez Queue lengths at time ¢ > 0



A warm up to the Model

A A A A A

e

z;—1(t) (1) Tit1(?)
z;(t) € N Number of links in cell : € Z at time t > 0

{%‘(t)}iez Queue lengths at time ¢ > 0

Independent Poisson Arrivals



A warm up to the Model
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z;—1(t) (1) Tit1(?)
z;(t) € N Number of links in cell : € Z at time t > 0

{ﬁi(t)}iez Queue lengths at time ¢ > 0

Independent Poisson Arrivals
x;(¢)

Rate of departure from queue 7 € Z attime ¢ 21 (1) + 2 (t) + 241 ()

If ‘neighboring’ queues are large, instantaneous departure rate is small.



Rate of Departure - SIR
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d
{zi()}ieze € N*' Queue Lengths
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Rate of Departure - SIR

d
{zi()}ieze € N*' Queue Lengths

Interference Sequence {a; } ;<74

0 >0Viezd  a=a,Viez'  L=sup{|lillx:a>0} <o
apgp — 1
Positivity Symmetry Finite Support

Interference at queue i - Z a;z;—j(t)
jezd

1

iezd GjTi—j(t)

SIR at a customer in queue 7 at time ¢ S

iy (t)

Rate of departure from any queue 7 at time ¢
Zjezd a;x;—j(t)

Translation Invariant in Space



Interference Queueing Dynamics

44

’

Rate of departure from queue i € Z at time ¢ S
J

(2;(t)}ieze € N%° Queue lengths at time ¢ > 0

Independent rate \ Poisson arrivals

(1)

czd AjLi—j ()

If ‘neighboring’ queues are large, instantaneous departure rate is small.

In the toy example, a; = 1if |¢| < 1and a; = 0 otherwise



Interference Queueing Dynamics

¢ & b

(2;(t)}ieze € N%° Queue lengths at time ¢ > 0

—o—¢—o Independent rate \ Poisson arrivals

<
=
—o—9o—0—9¢
o
—

(1)

iezd jTi—j(t)

Rate of departure from queue ¢ € Z at time ¢ S

If ‘neighboring’ queues are large, instantaneous departure rate is small.

Questions -

1) For what \ and {@i};czd, is the process {%i(t)}icza ‘stable’ ?

2) Characterize the steady state ??



Connection with Related Models

Few Papers discuss Infinite Queuing Networks

1) Kelbert-Kontsevich-Rybko: On Jackson Networks on Denumerable
Graphs, 1988.

2) Foss, Chernova: On stability of polling models with infinite number of
queues, 1996.

3) Borovkov-Korshunov-Schassberger: Ergodicity of a polling network
with an infinite number of stations, 19909.

4) Baccelli-Foss: Poisson Hail on a Hot Ground, 2011.

Similarities to Interacting Particle System (Liggett, 1985).
However, each particle (queue) has a countable number of states.
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1. Stability

fA)  a; < 1, then system is stable
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Main Results

1. Stability

fA)  a; < 1, then system is stable

jeZ4d

2. Moments

Let {y@'}iezd be the minimal stationary solution to the dynamics

A
If A a; <1, then E[y,] =
jezd 1 — )\ZjEZd Clj
2 2
|f )\ng:d a; < g then t[?JO] < O

[Shneer and Stolyar’18] established this for the entire stability range

In upcoming work by Abishek Sankararaman and Sayan Banerjee, exponential
moments are shown to exist in the entire range



Intuition

Queue |

Consider any local maximum queue i, i.e. x;(t) = max{z;_;(t) : a; > 0}

>
jezd AjLi—j (t) ZjeZd a;

Its instantaneous departure rate is >

The arrival rate at every queue is A

if A a; <1, then this local maximum queue has negative drift
jend



Intuition

Poisson Arrivals of rate A

Net Arrival rate is* D _ @
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Intuition

® Poisson Arrivals of rate A
O Net Arrival rate is* D _ @
® aq ‘ aq Ier
‘ ‘ ................... > ‘ €| . ‘
® ® ® @ ® ®
l Exponential Rate 1

Stability - A 2 @ <1
JEL?
A Zjezd 4 1
Mean Queue Length - 1 —-\> . s.a; > . cpaay

M/M/1 Fraction of solid balls



Monotonicity

If two initial conditions {z;(0) };cze and {y;(0)};cza s.t. forall i € Z¢

z;(0) < y;(0) , then there exists a coupling such that almost-surely

Vt >0, VieZ z;(t) < y;(t).
t >0

tA
0 —————

Queue
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Monotonicity

If two initial conditions {z;(0) };cze and {y;(0)};cza s.t. forall i € Z¢

z;(0) < y;(0) , then there exists a coupling such that almost-surely

Vt >0, VieZ z;(t) < y;(t).

t >0
Proof Induction f
0 A
Arrivals retain the ordering
Queue

Two queues are equal - higher interference system has smaller departure

Unequal queues - Retains ordering as at-most one customer departs



Proof Steps

A 1. Consider a spatial truncation - finite dimensional

@ O O

0

nT 7 T Y 2.1f M) a; <1 => Stability

® ® ® jEZL
v

Max queue length - Lyapunov function
< . >

3. Rate Conservation Principle

A ey <1 o By =

jezd

— 0p (1) Tightness of {y(()n)}nEN



Main Proof Idea - Stability

Two systems on B ¢ Z¢ with the same dynamics.
All queues In BL are frozen without activity.

- {wi(t) }iep: the set Bis a torus.

- {z;(t) }iep : the set B has boundary effects.

Interference is lower at the boundaries.




Main Proof Idea - Stability

Two systems on B ¢ Z¢ with the same dynamics.
All queues In BL are frozen without activity.

- {wi(t) }iep: the set Bis a torus.

- {z;(t) }iep : the set B has boundary effects.

Interference is lower at the boundaries.

Vit Vi € B

1) Zl?z(t) > Zz(t)

2) yi(t) > 2i(t)

Monotonicity




Finite Torus System

{yi(t)}icB process on a torus.

Theorem - If 2D 4 <1 | then {vy;(t) };c B is Positive Recurrent and the

jezd

stationary distribution possess exponential moments. Furthermore, the

mean queue length satisfies E[y,(¢)] = . )\£
_ jeza 4j




Finite Torus System

{yi(t)}icB process on a torus.

Theorem - If 2D 4 <1 | then {vy;(t) };c B is Positive Recurrent and the

jezd

stationary distribution possess exponential moments. Furthermore, the

- A
mean queue length satisfies E[y,(¢)] =
[ 0( )] 1 — )\Zjezd a;
Proof Idea of Stability
d A\ Yi Fluid scale equation
Yi =
dt 2 ezt @Y(i—j)/B (1)
Consider the maximal queue " (t) := arg max Y (1)
’ Yir(t) = A MG This h tive drift
g, drR(t) — o IS Nas negative ari
dt”" " zjezd ajyi*(t)—j(t) 9
1
S A < —€ n r boun a stable
> ena Can upper bound by

Single server queue.



Finite Torus System

Rate Conservation - “On Average what comes in is what goes out”.

o(?) 1,0 t)>0
Zjezcl a;y;; s (t) wolt)>

Avg arrival rate equals avg departure rate.

For Ex. A=K

Key ldea:

d
Consider I(?) := yo(?) Z a;y;(t) in stationarity and solve —E[I(t)] = 0

, dt
JjEZ

Average increase due to arrivals - A +A(D_ a;)E[yo(t)]
jeZ4

Average decrease due to departures - E[yo(?)]

( h

A
kl_AZjEZd a/j,

0 p

Equating the two yields E[yo(?)] € <

/



Proof Steps

A 1. Consider a spatial truncation - finite dimensional

@ O O

0

nT 7 T Y 2.1f M) a; <1 => Stability

® ® ® jEZL
v

Max queue length - Lyapunov function
< . >

3. Rate Conservation Principle

MY ey <1 = Ely] =

jezd

— o (1) Tightness of {y(()n)}nEN

4. Switch of limits in time and space  Coupling from the past

5. Monotone Convergence to yield the moment formula



Coupling From the Past

{2;(t)}icB, process where the set B has boundary effects.

Monotonicity => x;(t) > z;(t) and y;(t) > 2;(t)

Thus L [Z() (t)] <

< Uniformly in the size of B
1 — A ZjEZd Q

Consider B,, /' Z* and corresponding stationary z(()n) (0)




Coupling From the Past

Let B, /7% Z(()Z) (0) - the queue length of queue 0 at time 0, when
the truncated B, system is started empty at time -t.

Notice vt >0 lim Z(() t) (0) = x0.¢(0) Corollary of the construction ~ Queues

n—oo
Monotonicity =>
(n) ._ _(n) (n) ._ _(c0)
Jim zg = 2 4, and lim 25 = 2500 @S I8 O
1
We know Ssup E[Z(() M < A v ®
neN 1 — )\Z]EZd a’j ®

thus, [zéosg] < 00




Coupling From the Past

Lemma-If 2D a;< 1 then N € N and d71nv < o0 random such that

JEZL?
LI?();OO(O) — Z(()]gﬂ) a.S. Queues
................................................................................................................................... . O
SN
®
I'n
We know sup E[z{")] < A Thus Elzg . (0)] < 4
neN 1 —A ZjEZd Q 1 - )\ZjEZd @



Large Initial Conditions

Theorem

For every A, there exists a probability distribution on N such that if the
initial condition is {2(0)};cz« i.i.d. from this distribution, then Vi ¢ Z¢

Jim z;(t) = oo almost-surely.



Large Initial Conditions

Theorem

For every A, there exists a probability distribution on N such that if the
initial condition is {2(0)};cz« i.i.d. from this distribution, then Vi ¢ Z¢

lim z;(t) = oo almost-surely

If “large” frozen boundary is present, then stationary queue length at O is
also “large” with “high probabillity”



Convergence to Stationary Solutions

O O

® ® ® @ ®
g 0 (

I(ti)ien s.t. t; — oo s.t. Plag(ty) <i] < i

Because of the infinite barrier, all queues diverge to infinity at a linear rate



Convergence to Stationary Solutions

® ® ® @ ®
g 0 (

(t;)ien 8.t t; = 00 s.t. Plrg(t;) <] < ;3

Since interested only in finite time ¢;, can bring down the barrier to a finite
value at a small penalty in probabillity



Convergence to Stationary Solutions

® ® ® @ ®
g 0 (

3(ti)ien s.t. t; = 0o s.t. Plag(t;) < i) < i°

Since interested only in finite time ¢;, can bring down the barrier to a finite
value at a small penalty in probabillity

Borel-Cantelli to conclude the proof



Open Questions

How do correlations k& — E[yoys] — (Elyg]?) decay ?
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No propagation of chaos even in an infinite system !



Open Questions

Uniqueness of Stationary Solution

Existence/construction of other non-degenerate stationary solutions ?

Convergence to Stationary Solution

Do other initial conditions apart from all empty converge to a stationary
limit ?

Prediction of bad outage events propagating from ‘far out’ in space



Thank You

Related Papers -

1) Interference Queueing Networks on Grids
A. Sankararaman, F. Baccelli and S. Foss
In Annals of Applied Probability, to appear
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A.Sankararaman and F. Baccelli
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