Rates of Multivariate Normal Approximation for Statistics in Geometric Probability

Joseph Yukich (joint with Matthias Schulte)

Lehigh University

Euler International Mathematical Institute

Introduction

· Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

Introduction

· Questions pertaining to geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

· The sums describe some global feature of the random structure in terms of local contributions $\xi(x,\mathcal{X}),\ x\in\mathcal{X}.$

Set-up

- · Fix a window $W \subset \mathbb{R}^d, d \geq 2$. \mathcal{P}_s a Poisson point process of intensity s on W.
- · Goal. Establish central limit theorems for

$$\sum_{x \in \mathcal{P}_s} \xi(x, \mathcal{P}_s) \qquad (*)$$

as $s \to \infty$ and, more generally, establish rates of multivariate normal approximation for vectors whose components have the form (*).

Set-up

- · Fix a window $W \subset \mathbb{R}^d, d \geq 2$. \mathcal{P}_s a Poisson point process of intensity s on W.
- · Goal. Establish central limit theorems for

$$\sum_{x \in \mathcal{P}_s} \xi(x, \mathcal{P}_s) \qquad (*)$$

as $s \to \infty$ and, more generally, establish rates of multivariate normal approximation for vectors whose components have the form (*).

· If summands are identically distributed then usually one has

$$\mathbb{E}\sum_{x\in\mathcal{P}_s}\xi(x,\mathcal{P}_s)=\Theta(s), \quad \operatorname{Var}\sum_{x\in\mathcal{P}_s}\xi(x,\mathcal{P}_s)=\Theta(s).$$

Set-up and Main Goal

 $W \subset \mathbb{R}^d$, $d \geq 2$, a fixed measurable set.

 \mathcal{P}_{sg} , a Poisson point process on W with intensity sg; $g:W\to\mathbb{R}^+$. Thus, for $A\subseteq W$, $|\mathcal{P}_{sg}\cap A|$ is Poisson distributed with parameter $\int_A sg(x)dx$.

Set-up and Main Goal

 $W \subset \mathbb{R}^d$, $d \geq 2$, a fixed measurable set.

 \mathcal{P}_{sg} , a Poisson point process on W with intensity sg; $g:W\to\mathbb{R}^+$. Thus, for $A\subseteq W$, $|\mathcal{P}_{sg}\cap A|$ is Poisson distributed with parameter $\int_A sg(x)dx$.

 \mathbf{N} : the set of simple σ -finite counting measures on \mathbb{R}^d .

$$(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$$
, measurable maps ('scores') from $W\times \mathbf{N}\to \mathbb{R}$.

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \quad A_i \subseteq W.$$

Set-up and Main Goal

 $W \subset \mathbb{R}^d$, $d \geq 2$, a fixed measurable set.

 \mathcal{P}_{sg} , a Poisson point process on W with intensity sg; $g:W\to\mathbb{R}^+$. Thus, for $A\subseteq W$, $|\mathcal{P}_{sg}\cap A|$ is Poisson distributed with parameter $\int_A sg(x)dx$.

 \mathbf{N} : the set of simple σ -finite counting measures on \mathbb{R}^d .

 $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$, measurable maps ('scores') from $W\times \mathbf{N}\to \mathbb{R}$.

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \quad A_i \subseteq W.$$

Goal. Find rates of multivariate normal convergence for the m-vector

$$\left(\frac{H_s^{(1)} - \mathbb{E} H_s^{(1)}}{\sqrt{\text{Var} H_s^{(1)}}}, ..., \frac{H_s^{(m)} - \mathbb{E} H_s^{(m)}}{\sqrt{\text{Var} H_s^{(m)}}}\right)$$

as intensity $s \to \infty$.

Underlying assumption on scores $(\xi_s^{(i)})_{s\geq 1}$

Recall that the ith score $\xi_s^{(i)}$ generates the statistic

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \quad A_i \subseteq W.$$

Assume for all $i \in \{1,...,m\}$ that $\xi_s^{(i)}$ is the score $\xi^{(i)}$ at x evaluated on an s-dilation of the underlying point set:

$$\xi_s^{(i)}(x, \mathcal{M}) = \xi^{(i)}(x, x + s^{1/d}(\mathcal{M} - x)), \ x \in W, \mathcal{M} \in \mathbf{N}, \ s \ge 1.$$

Underlying assumption on scores $(\xi_s^{(i)})_{s\geq 1}$

Recall that the ith score $\xi_s^{(i)}$ generates the statistic

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \quad A_i \subseteq W.$$

Assume for all $i \in \{1,...,m\}$ that $\xi_s^{(i)}$ is the score $\xi^{(i)}$ at x evaluated on an s-dilation of the underlying point set:

$$\xi_s^{(i)}(x, \mathcal{M}) = \xi^{(i)}(x, x + s^{1/d}(\mathcal{M} - x)), \ x \in W, \mathcal{M} \in \mathbf{N}, \ s \ge 1.$$

If $\xi_s^{(i)}$ is translation invariant then this says

$$\xi_s^{(i)}(x,\mathcal{M}) = \xi^{(i)}(\mathbf{0}, s^{1/d}(\mathcal{M} - x)).$$

Stabilization of scores

For $s\geq 1$ we say that $R_s:W\times \mathbf{N}\to\mathbb{R}^+$ is a radius of stabilization for $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$, if for all $x\in W$, $\mathcal{M}\in \mathbf{N}$, $s\geq 1$, $i\in\{1,...,m\}$ we have

$$\xi_s^{(i)}(x,\mathcal{M}) = \xi_s^{(i)}(x,\mathcal{M} \cap B^d(x,R_s(x,\mathcal{M}))).$$

Stabilization of scores

For $s\geq 1$ we say that $R_s:W\times \mathbf{N}\to\mathbb{R}^+$ is a radius of stabilization for $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$, if for all $x\in W$, $\mathcal{M}\in \mathbf{N}$, $s\geq 1$, $i\in\{1,...,m\}$ we have

$$\xi_s^{(i)}(x,\mathcal{M}) = \xi_s^{(i)}(x,\mathcal{M} \cap B^d(x,R_s(x,\mathcal{M}))).$$

Loosely speaking, this says the scores $\xi_s^{(i)}, i \in \{1, ..., m\}$, are determined by data at distance $R_s(x, \mathcal{M})$ from x.

Exponential stabilization of scores

We say that $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$ are exponentially stabilizing wrt \mathcal{P}_{sg} if there are constants C_{stab} and $c_{stab}\in(0,\infty)$ such that

$$\mathbb{P}(R_s(x, \mathcal{P}_{sg}) \ge r) \le C_{stab} \exp(-c_{stab} s r^d), \quad r \ge 0, x \in W, s \ge 1.$$

Exponential stabilization of scores

We say that $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$ are exponentially stabilizing wrt \mathcal{P}_{sg} if there are constants C_{stab} and $c_{stab}\in(0,\infty)$ such that

$$\mathbb{P}(R_s(x, \mathcal{P}_{sg}) \ge r) \le C_{stab} \exp(-c_{stab} s r^d), \quad r \ge 0, x \in W, s \ge 1.$$

This says that scores $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$ have spatial dependencies which decay exponentially fast.

Idea: Sums of exponentially stabilizing scores should behave like sums of i.i.d. random variables.

p-moment condition on scores $(\xi_s^{(i)})_{s\geq 1}$

We say that $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$, satisfy a p-moment condition, $p\geq 1$, if there is $C_p\in(0,\infty)$ such that for all $i\in\{1,...,m\}$, we have

$$\sup_{s \in [1,\infty)} \sup_{x,y \in W} \mathbb{E} |\xi_s^{(i)}(x, \mathcal{P}_{sg} \cup \{y\})|^p \le C_p,$$

Rates of univariate normal convergence

 \mathcal{P}_{sg} , a Poisson point process on W with intensity sg; where $g:W\to\mathbb{R}^+$.

Put
$$H_s := H_s(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg}} \xi_s(x, \mathcal{P}_{sg}).$$

Rates of univariate normal convergence

 \mathcal{P}_{sg} , a Poisson point process on W with intensity sg; where $g:W\to\mathbb{R}^+$.

Put
$$H_s := H_s(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg}} \xi_s(x, \mathcal{P}_{sg}).$$

Theorem (Lachieze-Rey, Schulte + Y. (2019)) Assume $(\xi_s), s \ge 1$, are exponentially stabilizing and satisfy the p-moment condition for some $p \in (4, \infty)$. If $\mathrm{Var} H_s = \Omega(s)$, then

$$d_K\left(\frac{H_s - \mathbb{E}H_s}{\sqrt{\operatorname{Var}H_s}}, N(0, 1)\right) \le \frac{c}{\sqrt{s}}, \quad s \ge 1.$$

Rates of univariate normal convergence

 \mathcal{P}_{sg} , a Poisson point process on W with intensity sg; where $g:W\to\mathbb{R}^+$.

Put
$$H_s := H_s(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg}} \xi_s(x, \mathcal{P}_{sg}).$$

Theorem (Lachieze-Rey, Schulte + Y. (2019)) Assume $(\xi_s), s \ge 1$, are exponentially stabilizing and satisfy the p-moment condition for some $p \in (4,\infty)$. If $\mathrm{Var} H_s = \Omega(s)$, then

$$d_K\left(\frac{H_s - \mathbb{E}H_s}{\sqrt{\operatorname{Var}H_s}}, N(0, 1)\right) \le \frac{c}{\sqrt{s}}, \quad s \ge 1.$$

Question: what are good proximity bounds for

$$d_K\left(\frac{H_s - \mathbb{E}H_s}{\sqrt{s}}, N(0, 1)\right)$$
?

Multivariate CLT without rates

Recall $H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \ s \geq 1.$

Centered version: $\bar{H}_s^{(i)} := H_s^{(i)} - \mathbb{E} H_s^{(i)}$.

Multivariate CLT without rates

Recall
$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \ s \ge 1.$$

Centered version: $\bar{H}_s^{(i)} := H_s^{(i)} - \mathbb{E} H_s^{(i)}$.

Thm (Penrose; Baryshnikov + Y.) Assume $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$, are

- (i) exponentially stabilizing, and
- (ii) satisfy the p-moment condition for some p > 2.

Then for all $i, j \in \{1, ..., m\}$ as $s \to \infty$ we have

$$\frac{\operatorname{Cov}(H_s^{(i)}, H_s^{(j)})}{s} \to \sigma_{ij}, \quad s^{-1/2}(\bar{H}_s^{(1)}, ..., \bar{H}_s^{(m)}) \stackrel{\mathcal{D}}{\longrightarrow} N_{\Sigma},$$

where N_{Σ} is multivariate normal with covariance matrix

$$\Sigma = (\sigma_{ij})_{1 \le i, j \le m}.$$

(i) $\mathcal{H}_m^{(2)}\colon$ all C^2 -functions $h:\mathbb{R}^m \to \mathbb{R}$ such that

$$|h(x) - h(y)| \le ||x - y||, \ x, y \in \mathbb{R}^m,$$

$$\sup_{x \in \mathbb{R}^m} ||\mathsf{Hess} \ h(x)||_{\mathrm{op}} \le 1.$$

(i) $\mathcal{H}_m^{(2)}$: all C^2 -functions $h:\mathbb{R}^m \to \mathbb{R}$ such that

$$|h(x) - h(y)| \le ||x - y||, \ x, y \in \mathbb{R}^m,$$

$$\sup_{x \in \mathbb{R}^m} ||\mathsf{Hess} \ h(x)||_{\mathrm{op}} \le 1.$$

Given m-dimensional random vectors Y, Z we put

$$d_2(Y,Z) := \sup_{h \in \mathcal{H}_m^{(2)}} |\mathbb{E} h(Y) - \mathbb{E} h(Z)|$$

if $\mathbb{E} ||Y||, \mathbb{E} ||Z|| < \infty$.

(ii) $\mathcal{H}_m^{(3)}$: all C^3 -functions $h: \mathbb{R}^m \to \mathbb{R}$ such that absolute values of the second and third partial derivatives are bounded by 1.

(ii) $\mathcal{H}_m^{(3)}$: all C^3 -functions $h: \mathbb{R}^m \to \mathbb{R}$ such that absolute values of the second and third partial derivatives are bounded by 1.

Given m-dimensional random vectors Y, Z we put

$$d_3(Y,Z) := \sup_{h \in \mathcal{H}_m^{(3)}} |\mathbb{E} h(Y) - \mathbb{E} h(Z)|$$

if
$$\mathbb{E} ||Y||^2$$
, $\mathbb{E} ||Z||^2 < \infty$.

(ii) $\mathcal{H}_m^{(3)}$: all C^3 -functions $h: \mathbb{R}^m \to \mathbb{R}$ such that absolute values of the second and third partial derivatives are bounded by 1.

Given m-dimensional random vectors Y, Z we put

$$d_3(Y,Z) := \sup_{h \in \mathcal{H}_m^{(3)}} |\mathbb{E} h(Y) - \mathbb{E} h(Z)|$$

if
$$\mathbb{E} ||Y||^2$$
, $\mathbb{E} ||Z||^2 < \infty$.

$$d_{convex}(Y,Z) := \sup_{h \in \mathcal{I}} |\mathbb{E} h(Y) - \mathbb{E} h(Z)|,$$

where \mathcal{I} is the set of indicators of convex sets in \mathbb{R}^m .

Main Theorem: Rates of Multivariate Normal Convergence

Recall
$$H_s^{(i)}:=H_s^{(i)}(\mathcal{P}_{sg}):=\sum_{x\in\mathcal{P}_{sg}\cap A_i}\xi_s^{(i)}(x,\mathcal{P}_{sg}),\ s\geq 1.$$

$$\frac{\operatorname{Cov}(H_s^{(i)}, H_s^{(j)})}{s} \to \sigma_{ij}, \quad s^{-1/2}(\bar{H}_s^{(1)}, ..., \bar{H}_s^{(m)}) \xrightarrow{\mathcal{D}} N_{\Sigma}.$$

· Assume $\Sigma = (\sigma_{ij})_{1 \leq i,j \leq m}$ is positive definite.

Main Theorem: Rates of Multivariate Normal Convergence

Recall
$$H_s^{(i)}:=H_s^{(i)}(\mathcal{P}_{sg}):=\sum_{x\in\mathcal{P}_{sg}\cap A_i}\xi_s^{(i)}(x,\mathcal{P}_{sg}),\ s\geq 1.$$

$$\frac{\operatorname{Cov}(H_s^{(i)}, H_s^{(j)})}{s} \to \sigma_{ij}, \quad s^{-1/2}(\bar{H}_s^{(1)}, ..., \bar{H}_s^{(m)}) \xrightarrow{\mathcal{D}} N_{\Sigma}.$$

· Assume $\Sigma = (\sigma_{ij})_{1 \leq i,j \leq m}$ is positive definite.

Theorem (Schulte + Y.) Assume $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$ are

- (i) exponentially stabilizing, and
- (ii) satisfy the p-moment condition for some p > 6.

Main Theorem: Rates of Multivariate Normal Convergence

Recall
$$H_s^{(i)}:=H_s^{(i)}(\mathcal{P}_{sg}):=\sum_{x\in\mathcal{P}_{sg}\cap A_i}\xi_s^{(i)}(x,\mathcal{P}_{sg}),\ s\geq 1.$$

$$\frac{\operatorname{Cov}(H_s^{(i)}, H_s^{(j)})}{s} \to \sigma_{ij}, \quad s^{-1/2}(\bar{H}_s^{(1)}, ..., \bar{H}_s^{(m)}) \xrightarrow{\mathcal{D}} N_{\Sigma}.$$

· Assume $\Sigma = (\sigma_{ij})_{1 \le i,j \le m}$ is positive definite.

Theorem (Schulte + Y.) Assume $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$ are

- (i) exponentially stabilizing, and
- (ii) satisfy the p-moment condition for some p > 6.

Then there is a constant $C \in (0, \infty)$ such that

$$\tilde{d}(s^{-1/2}(\bar{H}_s^{(1)}, ..., \bar{H}_s^{(m)}), N_{\Sigma}) \le Cs^{-1/d}, \ s \ge 1, \ (*)$$

for $\tilde{d} \in \{d_2, d_3, d_{convex}\}.$

Two remarks

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \ s \ge 1.$$

(i) A main ingredient to the proof: For all $i, j \in \{1, ..., m\}$

$$\left| \sigma_{ij} - \frac{\mathsf{Cov}(H_s^{(i)}, H_s^{(j)})}{s} \right| \le Cs^{-1/d}, \ s \ge 1.$$

Two remarks

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \ s \ge 1.$$

(i) A main ingredient to the proof: For all $i, j \in \{1, ..., m\}$

$$\left|\sigma_{ij} - \frac{\mathsf{Cov}(H_s^{(i)}, H_s^{(j)})}{s}\right| \le Cs^{-1/d}, \quad s \ge 1.$$

(ii) If we replace N_{Σ} by $N_{\Sigma(s)}$, where $\Sigma(s)$ is the covariance matrix of

$$s^{-1/2}(\bar{H}_s^{(1)},...,\bar{H}_s^{(m)}),$$

then the rates of multivariate normal convergence improve to

$$\tilde{d}(s^{-1/2}(\bar{H}_s^{(1)},...,\bar{H}_s^{(m)}),N_{\Sigma(s)}) \le Cs^{-1/2}, \ s \ge 1,$$

for $\tilde{d} \in \{d_2, d_3, d_{convex}\}$. Rates are not improvable in general.

Literature

- · Multivariate clts for vectors with certain dependency structures: Rai \breve{c} (2004), Goldstein and Rinott (2005), Chen, Goldstein, and Shao (2011)
- · Penrose and Wade (2008): consider the special case $\xi_s^{(1)}=...=\xi_s^{(m)}$ and all sets $A_i, i\in\{1,...,m\}$, are disjoint. They establish rate of normal convergence $O(s^{-1/(2d+\epsilon)}), \ \epsilon>0$, wrt Kolmogorov distance in \mathbb{R}^d .

Literature

- · Multivariate clts for vectors with certain dependency structures: Rai \breve{c} (2004), Goldstein and Rinott (2005), Chen, Goldstein, and Shao (2011)
- · Penrose and Wade (2008): consider the special case $\xi_s^{(1)}=...=\xi_s^{(m)}$ and all sets $A_i, i\in\{1,...,m\}$, are disjoint. They establish rate of normal convergence $O(s^{-1/(2d+\epsilon)}), \ \epsilon>0$, wrt Kolmogorov distance in \mathbb{R}^d .
- · Peccati and Zheng (2010)

Literature

- · Multivariate clts for vectors with certain dependency structures: Rai \breve{c} (2004), Goldstein and Rinott (2005), Chen, Goldstein, and Shao (2011)
- · Penrose and Wade (2008): consider the special case $\xi_s^{(1)} = ... = \xi_s^{(m)}$ and all sets $A_i, i \in \{1, ..., m\}$, are disjoint. They establish rate of normal convergence $O(s^{-1/(2d+\epsilon)}), \ \epsilon > 0$, wrt Kolmogorov distance in \mathbb{R}^d .
- · Peccati and Zheng (2010)
- \cdot Hug, Last, Schulte (2016): establish rates with respect to d_3 which depend on knowledge of Wiener-It \hat{o} chaos expansion.

CLTs for Poisson functionals, Malliavin calculus

· **Goal:** Find rates of multivariate normal approximation for $s^{-1/2}(\bar{H}_s^{(1)},...,\bar{H}_s^{(m)})$; each $H_s^{(i)}$ is a function of \mathcal{P}_{sg} and is thus a Poisson functional.

CLTs for Poisson functionals, Malliavin calculus

- · **Goal:** Find rates of multivariate normal approximation for $s^{-1/2}(\bar{H}_s^{(1)},...,\bar{H}_s^{(m)})$; each $H_s^{(i)}$ is a function of \mathcal{P}_{sg} and is thus a Poisson functional.
- \cdot We first prove rates of multivariate normal approximation for a vector of general Poisson functionals.
- \cdot η a Poisson process over $(\mathbb{X}, \mathcal{F})$ with intensity measure λ ; thus $|\eta \cap A|$ is Poisson distributed with parameter $\lambda(A), A \in \mathcal{F}$.

CLTs for Poisson functionals, Malliavin calculus

- · **Goal:** Find rates of multivariate normal approximation for $s^{-1/2}(\bar{H}_s^{(1)},...,\bar{H}_s^{(m)})$; each $H_s^{(i)}$ is a function of \mathcal{P}_{sg} and is thus a Poisson functional.
- \cdot We first prove rates of multivariate normal approximation for a vector of general Poisson functionals.
- \cdot η a Poisson process over (\mathbb{X},\mathcal{F}) with intensity measure λ ; thus $|\eta\cap A|$ is Poisson distributed with parameter $\lambda(A),A\in\mathcal{F}.$
- \cdot $F=(F_1,..,F_m)$, $m\in\mathbb{N}$, a vector of (Poisson) functionals of η if each F_i is represented as a measurable function f_i of η .

- · **Goal:** Find rates of multivariate normal approximation for $s^{-1/2}(\bar{H}_s^{(1)},...,\bar{H}_s^{(m)})$; each $H_s^{(i)}$ is a function of \mathcal{P}_{sg} and is thus a Poisson functional.
- \cdot We first prove rates of multivariate normal approximation for a vector of general Poisson functionals.
- \cdot η a Poisson process over $(\mathbb{X}, \mathcal{F})$ with intensity measure λ ; thus $|\eta \cap A|$ is Poisson distributed with parameter $\lambda(A), A \in \mathcal{F}$.
- \cdot $F=(F_1,..,F_m)$, $m\in\mathbb{N}$, a vector of (Poisson) functionals of η if each F_i is represented as a measurable function f_i of η .
- $D_x F_i := f_i(\eta \cup \{x\}) f_i(\eta).$
- $D_{x,y}^2 F_i := f_i(\eta \cup \{x\} \cup \{y\}) f_i(\eta \cup \{x\}) f_i(\eta \cup \{y\}) + f_i(\eta).$

- · Peccati and Zheng (2010): η a Poisson process over $(\mathbb{X}, \mathcal{F})$ with intensity measure λ .
- $\cdot F = (F_1, ..., F_m), m \in \mathbb{N}$, a vector of (Poisson) functionals of η .

- · Peccati and Zheng (2010): η a Poisson process over (\mathbb{X},\mathcal{F}) with intensity measure λ .
- $\cdot F = (F_1, ..., F_m), m \in \mathbb{N}$, a vector of (Poisson) functionals of η .
- $\cdot \mathbb{E} F_i = 0$, $\Sigma = (\sigma_{i,j})_{i,j \in \{1,\ldots,m\}}$ positive definite matrix. Put

$$\beta_1 := \sqrt{\sum_{i,j=1}^m \mathbb{E} \left(\sigma_{i,j} - \int_{\mathbb{X}} D_x F_i (-D_x L^{-1} F_j) \lambda(dx)\right)^2}$$

$$\beta_2 := \int_{\mathbb{X}} \mathbb{E} \left(\sum_{i=1}^m |D_x F_i| \right)^2 \sum_{j=1}^m |D_x L^{-1} F_j| \lambda(dx).$$

· Then $d_2(F,N_\Sigma)$ and $d_3(F,N_\Sigma)$ are both bounded by $C(m,\Sigma)\cdot (\beta_1+\beta_2)$.

- · Peccati and Zheng (2010): η a Poisson process over (\mathbb{X},\mathcal{F}) with intensity measure λ .
- $\cdot F = (F_1, ..., F_m), m \in \mathbb{N}$, a vector of (Poisson) functionals of η .
- $\cdot \mathbb{E} F_i = 0$, $\Sigma = (\sigma_{i,j})_{i,j \in \{1,\dots,m\}}$ positive definite matrix. Put

$$\beta_1 := \sqrt{\sum_{i,j=1}^m \mathbb{E} \left(\sigma_{i,j} - \int_{\mathbb{X}} D_x F_i (-D_x L^{-1} F_j) \lambda(dx)\right)^2}$$

$$\beta_2 := \int_{\mathbb{X}} \mathbb{E} \left(\sum_{i=1}^m |D_x F_i| \right)^2 \sum_{j=1}^m |D_x L^{-1} F_j| \lambda(dx).$$

- · Then $d_2(F,N_\Sigma)$ and $d_3(F,N_\Sigma)$ are both bounded by $C(m,\Sigma)\cdot (\beta_1+\beta_2)$.
- · Last, Peccati, Schulte (2016): $\mathbb{E} |D_x L^{-1} F|^p$ and $\mathbb{E} |D_{x,y}^2 L^{-1} F|^p$ bounded by moments of difference operators.

CLT for general Poisson functionals

Theorem (Schulte and Y.) Let $F=(F_1,\ldots,F_m), m\in\mathbb{N}$, be a vector of Poisson functionals; $\mathbb{E}\,F_i=0, i\in\{1,\ldots,m\}$. Let $\Sigma=(\sigma_{ij})_{i,j\in\{1,\ldots,m\}}\in\mathbb{R}^{m\times m}$ be positive definite. Then

$$d_3(F, N_{\Sigma}) \le \frac{m}{2} \sum_{i,j=1}^{m} |\sigma_{ij} - \text{Cov}(F_i, F_j)| + m\gamma_1 + \frac{m}{2}\gamma_2 + \frac{m^2}{4}\gamma_3.$$

CLT for general Poisson functionals

Here

$$\begin{split} \gamma_1 &:= \bigg(\sum_{i,j=1}^m \int_{\mathbb{X}^3} \left(\mathbb{E}\,(D_{x_1,x_3}^2 F_i)^2 (D_{x_2,x_3}^2 F_i)^2\right)^{1/2} \\ & \times \left(\mathbb{E}\,(D_{x_1} F_j)^2 (D_{x_2} F_j)^2\right)^{1/2} \lambda^3 (\mathsf{d}(x_1,x_2,x_3)) \bigg)^{1/2} \\ \gamma_2 &:= \bigg(\sum_{i,j=1}^m \int_{\mathbb{X}^3} \left(\mathbb{E}\,(D_{x_1,x_3}^2 F_i)^2 (D_{x_2,x_3}^2 F_i)^2\right)^{1/2} \\ & \times \left(\mathbb{E}\,(D_{x_1,x_3}^2 F_j)^2 (D_{x_2,x_3}^2 F_j)^2\right)^{1/2} \lambda^3 (\mathsf{d}(x_1,x_2,x_3)) \bigg)^{1/2} \\ \gamma_3 &:= \sum_{i=1}^m \int_{\mathbb{X}} \mathbb{E}\,|D_x F_i|^3 \,\lambda(\mathsf{d}x) \end{split}$$

Special case: CLT for vector of stabilizing functionals

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \ s \ge 1.$$

· Let $F_i := s^{-1/2} \bar{H}_s^{(i)}$. F_i is a sum of stabilizing scores. Put $\mathbb X$ to be window W, put $\lambda(\mathrm{d} x)$ to be sg(x)dx. Then the integrals of moments of difference operators are $O(s^{-1/2})$.

Special case: CLT for vector of stabilizing functionals

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \ s \ge 1.$$

- · Let $F_i := s^{-1/2} \bar{H}_s^{(i)}$. F_i is a sum of stabilizing scores. Put $\mathbb X$ to be window W, put $\lambda(\mathrm{d} x)$ to be sg(x)dx. Then the integrals of moments of difference operators are $O(s^{-1/2})$.
- · Schulte + Y show $\gamma_1, \gamma_2, \gamma_3$ are all $O(s^{-1/2})$. Thus

$$d_3(F, N_{\Sigma}) \le \frac{m}{2} \sum_{i,j=1}^m |\sigma_{ij} - \operatorname{Cov}(F_i, F_j)| + m\gamma_1 + \frac{m}{2}\gamma_2 + \frac{m^2}{4}\gamma_3$$
$$= O(s^{-1/d}) + O(s^{-1/2}).$$

Theorem (Schulte + Y.) Let $F = (F_1, ..., F_m)$, $m \in \mathbb{N}$, be a vector of Poisson functionals $F_1, ..., F_m$ with $\mathbb{E} F_i = 0$, $i \in \{1, ..., m\}$.

Theorem (Schulte + Y.) Let $F = (F_1, ..., F_m)$, $m \in \mathbb{N}$, be a vector of Poisson functionals $F_1, ..., F_m$ with $\mathbb{E} F_i = 0$, $i \in \{1, ..., m\}$.

If $\Sigma \in \mathbb{R}^{m \times m}$ is positive definite then there exists a constant $C \in (0, \infty)$ depending on m and Σ such that

$$d_{convex}(F, N_{\Sigma}) \le C \max \left\{ \sum_{i,j \in \{1,\dots,m\}} |\sigma_{ij} - \text{Cov}(F_i, F_j)|, \gamma_1, \gamma_2, \tilde{\gamma_3}, \gamma_4, \gamma_5 \right\}.$$

Here the terms $\gamma_1, \gamma_2, \tilde{\gamma_3}, \gamma_4, \gamma_5$ are integrals of products of moments of difference operators applied to the Poisson functionals $F_1, ..., F_m$. For example,

$$\tilde{\gamma_3} := \left[\sum_{j,k=1}^m \int_{\mathbb{X}} \mathbb{E} \left(D_x F_j \right)^4 \lambda(dx) \right. \\ \left. + \frac{15}{4} \int_{\mathbb{X}^2} (\mathbb{E} D_{x,y}^2 F_j)^4 \right)^{1/2} (\mathbb{E} \left(D_x F_k \right)^4)^{1/2} \lambda^2(d(x,y)) \\ \left. + \frac{3}{4} \int_{\mathbb{X}^2} (\mathbb{E} D_{x,y}^2 F_j)^4 \right)^{1/2} (\mathbb{E} \left(D_{x,y} F_k \right)^4)^{1/2} \lambda^2(d(x,y)) \right]^{1/2}.$$

Here the terms $\gamma_1, \gamma_2, \tilde{\gamma_3}, \gamma_4, \gamma_5$ are integrals of products of moments of difference operators applied to the Poisson functionals $F_1, ..., F_m$. For example,

$$\tilde{\gamma}_3 := \left[\sum_{j,k=1}^m \int_{\mathbb{X}} \mathbb{E} \left(D_x F_j \right)^4 \lambda(dx) \right. \\ \left. + \frac{15}{4} \int_{\mathbb{X}^2} (\mathbb{E} D_{x,y}^2 F_j)^4 \right)^{1/2} (\mathbb{E} \left(D_x F_k \right)^4)^{1/2} \lambda^2(d(x,y)) \\ \left. + \frac{3}{4} \int_{\mathbb{X}^2} (\mathbb{E} D_{x,y}^2 F_j)^4 \right)^{1/2} (\mathbb{E} \left(D_{x,y} F_k \right)^4)^{1/2} \lambda^2(d(x,y)) \right]^{1/2}.$$

Fortunately, one may control the order of growth of the terms $\gamma_1,, \gamma_5$ when the Poisson functionals F_i are sums of stabilizing score functions.

$\overline{d_{convex}}$ applied to stabilizing functionals $H_s^{(i)}$

Let
$$F_i := s^{-1/2} \bar{H}_s^{(i)}$$
; $H_s^{(i)} := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg})$.

Then $\max(\gamma_1, ..., \gamma_5) = O(s^{-1/2}).$

$\overline{d_{convex}}$ applied to stabilizing functionals $H_s^{(i)}$

Let
$$F_i := s^{-1/2} \bar{H}_s^{(i)}$$
; $H_s^{(i)} := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg})$.

Then $\max(\gamma_1, ..., \gamma_5) = O(s^{-1/2}).$

Theorem (Schulte + Y; 2019) Assume $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$ are

- (i) exponentially stabilizing, and
- (ii) satisfy the p-moment condition for some p > 6.

$\overline{d_{convex}}$ applied to stabilizing functionals $H_s^{(i)}$

Let
$$F_i := s^{-1/2} \bar{H}_s^{(i)}$$
; $H_s^{(i)} := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg})$.

Then $\max(\gamma_1, ..., \gamma_5) = O(s^{-1/2}).$

Theorem (Schulte + Y; 2019) Assume $(\xi_s^{(1)})_{s\geq 1},...,(\xi_s^{(m)})_{s\geq 1}$ are

- (i) exponentially stabilizing, and
- (ii) satisfy the p-moment condition for some p > 6.

Then there is a constant $C \in (0, \infty)$ such that

$$d_{convex}(s^{-1/2}(\bar{H}_s^{(1)}, ..., \bar{H}_s^{(m)}), N_{\Sigma}) \le Cs^{-1/d}, \ s \ge 1$$

and

$$d_{convex}(s^{-1/2}(\bar{H}_s^{(1)}, ..., \bar{H}_s^{(m)}), N_{\Sigma(s)}) \le Cs^{-1/2}, \ s \ge 1,$$

where $\Sigma(s)$ is the covariance matrix of $s^{-1/2}(\bar{H}_s^{(1)},...,\bar{H}_s^{(m)}).$

(i) **Multivariate statistics of** kNN **graph.** Let $k \in \mathbb{N}$ and $\mathcal{X} \subset \mathbb{R}^d$ a finite point set. For $x,y \in \mathcal{X}$, we put an undirected edge between x and y if x is one of the k nearest neighbors of y and/or y is a k nearest neighbor of x.

(i) **Multivariate statistics of** kNN **graph.** Let $k \in \mathbb{N}$ and $\mathcal{X} \subset \mathbb{R}^d$ a finite point set. For $x,y \in \mathcal{X}$, we put an undirected edge between x and y if x is one of the k nearest neighbors of y and/or y is a k nearest neighbor of x. Put

 $H^{(k)}(\mathcal{X}) := \mathsf{sum}$ of lengths of edges in kNN on \mathcal{X} .

(i) **Multivariate statistics of** kNN **graph.** Let $k \in \mathbb{N}$ and $\mathcal{X} \subset \mathbb{R}^d$ a finite point set. For $x,y \in \mathcal{X}$, we put an undirected edge between x and y if x is one of the k nearest neighbors of y and/or y is a k nearest neighbor of x. Put

$$H^{(k)}(\mathcal{X}) := \mathsf{sum}$$
 of lengths of edges in kNN on \mathcal{X} .

Theorem. Let \mathcal{P}_{sg} be a Poisson point process on $[0,1]^d$ with intensity sg, g bounded away from 0 and ∞ . Then for all $k_i \in \mathbb{N}$, $1 \le i \le m$, we have

$$\tilde{d}(s^{-1/2}(\bar{H}_s^{(k_1)}(\mathcal{P}_{sg}),...,\bar{H}_s^{(k_m)}(\mathcal{P}_{sg})),N_{\Sigma}) \leq Cs^{-1/d}, \ s \geq 1,$$

for $\tilde{d} \in \{d_2, d_3, d_{convex}\}.$

(ii) Multivariate statistics of random geometric graph. Fix r>0. Let $\mathcal{X}\subset\mathbb{R}^d$ be a finite point set. Put $N_s^{(i)}(\mathcal{X})$ to be the number of components of random geometric graph $G(s^{1/d}\mathcal{X},s^{1/d}r)$ of size i.

(ii) Multivariate statistics of random geometric graph. Fix r>0. Let $\mathcal{X}\subset\mathbb{R}^d$ be a finite point set. Put $N_s^{(i)}(\mathcal{X})$ to be the number of components of random geometric graph $G(s^{1/d}\mathcal{X},s^{1/d}r)$ of size i.

Theorem. Let \mathcal{P}_{sg} be a Poisson point process on $[0,1]^d$ with intensity sg, g bounded away from 0 and ∞ . When $r=\rho s^{-1/d}$ we have for all $i_j\in\mathbb{N}$, $1\leq j\leq m$

$$\tilde{d}(s^{-1/2}(\bar{N}_s^{(i_1)}(\mathcal{P}_{sg}),...,\bar{N}_s^{(i_m)}(\mathcal{P}_{sg})),N_{\Sigma}) \leq Cs^{-1/d}, \ s \geq 1,$$

for $\tilde{d} \in \{d_2, d_3, d_{convex}\}.$

• 1. Stein: Let $F = (F_1, ..., F_m)$ be a vector of Poisson functionals; let $\Sigma \in \mathbb{R}^{m \times m}$ be positive definite; $h : \mathbb{R}^m \to \mathbb{R}$.

- 1. Stein: Let $F = (F_1, ..., F_m)$ be a vector of Poisson functionals; let $\Sigma \in \mathbb{R}^{m \times m}$ be positive definite; $h : \mathbb{R}^m \to \mathbb{R}$.
- · To assess the difference $\mathbb{E} h(F) \mathbb{E} (h(N_{\Sigma}))$, where h belongs to a class of test functions, it is enough to assess the difference

$$\mathbb{E}\sum_{i=1}^{m} F_{i} \frac{\partial f_{h}}{\partial y_{i}}(F) - \frac{\partial^{2} f_{h}}{\partial y_{i}^{2}}(F),$$

where $f_h: \mathbb{R}^m \to \mathbb{R}$ is a solution of the multivariate Stein equation:

$$\sum_{i=1}^{m} y_i \frac{\partial f}{\partial y_i}(y) - \frac{\partial^2 f}{\partial y_i^2}(y) = h(y) - \mathbb{E} h(N_{\Sigma}), \ y \in \mathbb{R}^m.$$

- 1. Stein: Let $F = (F_1, ..., F_m)$ be a vector of Poisson functionals; let $\Sigma \in \mathbb{R}^{m \times m}$ be positive definite; $h : \mathbb{R}^m \to \mathbb{R}$.
- · To assess the difference $\mathbb{E} h(F) \mathbb{E} (h(N_{\Sigma}))$, where h belongs to a class of test functions, it is enough to assess the difference

$$\mathbb{E}\sum_{i=1}^{m} F_{i} \frac{\partial f_{h}}{\partial y_{i}}(F) - \frac{\partial^{2} f_{h}}{\partial y_{i}^{2}}(F),$$

where $f_h: \mathbb{R}^m \to \mathbb{R}$ is a solution of the multivariate Stein equation:

$$\sum_{i=1}^{m} y_i \frac{\partial f}{\partial y_i}(y) - \frac{\partial^2 f}{\partial y_i^2}(y) = h(y) - \mathbb{E} h(N_{\Sigma}), \ y \in \mathbb{R}^m.$$

· Given $t \in (0,1)$, and test function h, we introduce its smoothed version

$$h_{t,\Sigma}(y) := \int_{\mathbb{R}^m} h(\sqrt{t}z + \sqrt{1-t}y)\phi_{\Sigma}(z)dz,$$

where $\phi_{\Sigma}(z)$ is the density of N_{Σ} .

 \cdot 2. Smoothing lemma: Let \mathcal{I} be collection of indicators of convex sets in \mathbb{R}^m .

$$d_{convex}(F, N_{\Sigma}) \leq \frac{4}{3} \sup_{h \in \mathcal{I}} |\mathbb{E} h_{t, \Sigma}(F) - \mathbb{E} h_{t, \Sigma}(N_{\Sigma})| + \frac{20}{\sqrt{2}} m \frac{\sqrt{t}}{1 - t}.$$

So it is enough to assess the difference of expectations over the smooth class of test functions $h_{t,\Sigma}$. This is accomplished with:

 \cdot 2. Smoothing lemma: Let \mathcal{I} be collection of indicators of convex sets in \mathbb{R}^m .

$$d_{convex}(F, N_{\Sigma}) \leq \frac{4}{3} \sup_{h \in \mathcal{I}} |\mathbb{E} h_{t, \Sigma}(F) - \mathbb{E} h_{t, \Sigma}(N_{\Sigma})| + \frac{20}{\sqrt{2}} m \frac{\sqrt{t}}{1 - t}.$$

So it is enough to assess the difference of expectations over the smooth class of test functions $h_{t,\Sigma}$. This is accomplished with:

· 3. Peccati + Zheng (Malliavin calculus on Poisson space):

$$\mathbb{E} h_{t,\Sigma}(F) - \mathbb{E} h_{t,\Sigma}(N_{\Sigma}) = \sum_{i,j=1}^{m} \sigma_{ij} \mathbb{E} \frac{\partial^{2} f_{t,h,\Sigma}}{\partial y_{i} \partial y_{j}}(F)$$

$$-\sum_{k=1}^{m} \mathbb{E} \int_{\mathbb{X}} D_{x} \frac{\partial f_{t,h,\Sigma}}{\partial y_{k}}(F)(-D_{x}L^{-1}F_{k})\lambda(dx).$$

· Here $f_{t,h,\Sigma}$ is the sol. to the MV Stein eq. associated with $h_{t,\Sigma}$

4. Good sup norm and L^2 bounds on the 2nd derivatives of $f_{t,h,\Sigma}$.

$$\mathbb{E} h_{t,\Sigma}(F) - \mathbb{E} h_{t,\Sigma}(N_{\Sigma}) = \sum_{i,j=1}^{m} \sigma_{ij} \mathbb{E} \frac{\partial^{2} f_{t,h,\Sigma}}{\partial y_{i} \partial y_{j}}(F)$$
$$- \sum_{k=1}^{m} \mathbb{E} \int_{\mathbb{X}} D_{x} \frac{\partial f_{t,h,\Sigma}}{\partial y_{k}}(F) (-D_{x} L^{-1} F_{k}) \lambda(dx).$$

4. Good sup norm and L^2 bounds on the 2nd derivatives of $f_{t,h,\Sigma}$.

$$\mathbb{E} h_{t,\Sigma}(F) - \mathbb{E} h_{t,\Sigma}(N_{\Sigma}) = \sum_{i,j=1}^{m} \sigma_{ij} \mathbb{E} \frac{\partial^{2} f_{t,h,\Sigma}}{\partial y_{i} \partial y_{j}}(F)$$
$$- \sum_{i=1}^{m} \mathbb{E} \int_{\mathbb{X}} D_{x} \frac{\partial f_{t,h,\Sigma}}{\partial y_{k}}(F) (-D_{x} L^{-1} F_{k}) \lambda(dx).$$

However,

$$\sup_{h \in \mathcal{I}} \mathbb{E} \sum_{i,j=1}^{m} \left(\frac{\partial^{2} f_{t,h,\Sigma}}{\partial y_{i} \partial y_{j}} (F) \right)^{2}$$

$$| \leq ||\Sigma^{-1}||_{\mathsf{op}}^2 \left(m^2 (\log t)^2 d_{convex}(F, N_{\Sigma}) + 444 m^{23/6} \right).$$

Combine steps 2, 3, 4 and choose parameter t in the right way.

 \mathcal{P}_{sg} , a Poisson point process on W with intensity sg.

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \quad A_i \subset W.$$

 \mathcal{P}_{sg} , a Poisson point process on W with intensity sg.

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \quad A_i \subset W.$$

We have found presumably optimal rates of multivariate normal convergence for the vector

$$\left(\frac{H_s^{(1)} - \mathbb{E}\,H_s^{(1)}}{\sqrt{s}},...,\frac{H_s^{(m)} - \mathbb{E}\,H_s^{(m)}}{\sqrt{s}}\right), \quad \text{as intensity } s \to \infty.$$

 \mathcal{P}_{sg} , a Poisson point process on W with intensity sg.

$$H_s^{(i)} := H_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}), \quad A_i \subset W.$$

We have found presumably optimal rates of multivariate normal convergence for the vector

$$\left(\frac{H_s^{(1)} - \mathbb{E}\,H_s^{(1)}}{\sqrt{s}},...,\frac{H_s^{(m)} - \mathbb{E}\,H_s^{(m)}}{\sqrt{s}}\right), \quad \text{as intensity } s \to \infty.$$

We needed to show that the scores satisfy two conditions:

- (i) exponential stabilization
- (ii) moment conditions.

Extensions:

(i) points in \mathcal{P}_{sg} may carry independent marks

Extensions:

- (i) points in \mathcal{P}_{sg} may carry independent marks
- (ii) rates of multivariate normal convergence for random measures

Extensions:

- (i) points in \mathcal{P}_{sg} may carry independent marks
- (ii) rates of multivariate normal convergence for random measures

$$\mu_s^{(i)}(\mathcal{P}_{sg}) := \sum_{x \in \mathcal{P}_{sg} \cap A_i} \xi_s^{(i)}(x, \mathcal{P}_{sg}) \delta_x, \quad A_i \subset W.$$

(iii) to be done: replace \mathcal{P}_{sg} by more general input, including binomial input, Gibbsian input, and input with fast decaying correlations.

THANK YOU

(iii) Multivariate statistics for equality of distributions. Let $\mathcal{X} \subset \mathbb{R}^d$ be a finite point set. Consider the undirected nearest neighbors graph $NNG(\mathcal{X})$ on \mathcal{X} . Color the nodes of \mathcal{X} with color i with probability $\pi_i, 1 \leq i \leq m$.

Let $H^{(i)}(\mathcal{X})$ be the number of edges in $NNG(\mathcal{X})$ which join nodes of color $i, 1 \leq i \leq m$.

Theorem. Let \mathcal{P}_{sg} be a Poisson point process on $[0,1]^d$ with intensity sg, $g \in \text{Lip}([0,1]^d)$, g bounded away from 0 and ∞ . We have

$$\tilde{d}(s^{-1/2}(\bar{H}_s^{(1)}(\mathcal{P}_{sg}),...,\bar{H}_s^{(m)}(\mathcal{P}_{sg})),N_{\Sigma}) \leq Cs^{-1/d}, \ s \geq 1,$$

for $\tilde{d} \in \{d_2, d_3, d_{convex}\}.$

This vector features in tests for equality of distributions.

