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Introduction

· Questions pertaining to geometric structures on random input X ⊂ Rd
often involve analyzing sums of spatially correlated terms∑

x∈X
ξ(x,X ),

where the R-valued score function ξ, defined on pairs (x,X ), represents
the interaction of x with respect to X .

· The sums describe some global feature of the random structure in terms
of local contributions ξ(x,X ), x ∈ X .
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Set-up

· Fix a window W ⊂ Rd, d ≥ 2. Ps a Poisson point process of intensity s
on W .
· Goal. Establish central limit theorems for∑

x∈Ps

ξ(x,Ps) (∗)

as s→∞ and, more generally, establish rates of multivariate normal
approximation for vectors whose components have the form (*).

· If summands are identically distributed then usually one has

E
∑
x∈Ps

ξ(x,Ps) = Θ(s), Var
∑
x∈Ps

ξ(x,Ps) = Θ(s).
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Set-up and Main Goal

W ⊂ Rd, d ≥ 2, a fixed measurable set.

Psg, a Poisson point process on W with intensity sg; g : W → R+. Thus,
for A ⊆W , |Psg ∩A| is Poisson distributed with parameter

∫
A sg(x)dx.

N: the set of simple σ-finite counting measures on Rd.

(ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1, measurable maps (‘scores’) from W ×N→ R.

H
(i)
s := H

(i)
s (Psg) :=

∑
x∈Psg∩Ai

ξ
(i)
s (x,Psg), Ai ⊆W.

Goal. Find rates of multivariate normal convergence for the m-vectorH(1)
s − EH(1)

s√
VarH

(1)
s

, ...,
H

(m)
s − EH(m)

s√
VarH

(m)
s


as intensity s→∞.

Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 4 / 32



Set-up and Main Goal

W ⊂ Rd, d ≥ 2, a fixed measurable set.

Psg, a Poisson point process on W with intensity sg; g : W → R+. Thus,
for A ⊆W , |Psg ∩A| is Poisson distributed with parameter

∫
A sg(x)dx.

N: the set of simple σ-finite counting measures on Rd.

(ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1, measurable maps (‘scores’) from W ×N→ R.

H
(i)
s := H

(i)
s (Psg) :=

∑
x∈Psg∩Ai

ξ
(i)
s (x,Psg), Ai ⊆W.

Goal. Find rates of multivariate normal convergence for the m-vectorH(1)
s − EH(1)

s√
VarH

(1)
s

, ...,
H

(m)
s − EH(m)

s√
VarH

(m)
s


as intensity s→∞.

Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 4 / 32



Set-up and Main Goal

W ⊂ Rd, d ≥ 2, a fixed measurable set.

Psg, a Poisson point process on W with intensity sg; g : W → R+. Thus,
for A ⊆W , |Psg ∩A| is Poisson distributed with parameter

∫
A sg(x)dx.

N: the set of simple σ-finite counting measures on Rd.

(ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1, measurable maps (‘scores’) from W ×N→ R.

H
(i)
s := H

(i)
s (Psg) :=

∑
x∈Psg∩Ai

ξ
(i)
s (x,Psg), Ai ⊆W.

Goal. Find rates of multivariate normal convergence for the m-vectorH(1)
s − EH(1)

s√
VarH

(1)
s

, ...,
H

(m)
s − EH(m)

s√
VarH

(m)
s


as intensity s→∞.

Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 4 / 32



Underlying assumption on scores (ξ
(i)
s )s≥1

Recall that the ith score ξ
(i)
s generates the statistic

H(i)
s := H(i)

s (Psg) :=
∑

x∈Psg∩Ai

ξ(i)
s (x,Psg), Ai ⊆W.

Assume for all i ∈ {1, ...,m} that ξ
(i)
s is the score ξ(i) at x evaluated on an

s-dilation of the underlying point set:

ξ(i)
s (x,M) = ξ(i)(x, x+ s1/d(M− x)), x ∈W,M∈ N, s ≥ 1.

If ξ
(i)
s is translation invariant then this says

ξ(i)
s (x,M) = ξ(i)(0, s1/d(M− x)).
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Stabilization of scores

For s ≥ 1 we say that Rs : W ×N→ R+ is a radius of stabilization for

(ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1, if for all x ∈W , M∈ N, s ≥ 1, i ∈ {1, ...,m} we

have
ξ(i)
s (x,M) = ξ(i)

s (x,M∩Bd(x,Rs(x,M))).

Loosely speaking, this says the scores ξ
(i)
s , i ∈ {1, ...,m}, are determined

by data at distance Rs(x,M) from x.
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Exponential stabilization of scores

We say that (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1 are exponentially stabilizing wrt Psg if

there are constants Cstab and cstab ∈ (0,∞) such that

P(Rs(x,Psg) ≥ r) ≤ Cstab exp(−cstabsrd), r ≥ 0, x ∈W, s ≥ 1.

This says that scores (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1 have spatial dependencies

which decay exponentially fast.

Idea: Sums of exponentially stabilizing scores should behave like sums of
i.i.d. random variables.
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p-moment condition on scores (ξ
(i)
s )s≥1

We say that (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1, satisfy a p-moment condition, p ≥ 1,

if there is Cp ∈ (0,∞) such that for all i ∈ {1, ...,m}, we have

sup
s∈[1,∞)

sup
x,y∈W

E |ξ(i)
s (x,Psg ∪ {y})|p ≤ Cp,
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Rates of univariate normal convergence

Psg, a Poisson point process on W with intensity sg; where g : W → R+.

Put Hs := Hs(Psg) :=
∑

x∈Psg
ξs(x,Psg).

Theorem (Lachieze-Rey, Schulte + Y. (2019)) Assume (ξs), s ≥ 1, are
exponentially stabilizing and satisfy the p-moment condition for some
p ∈ (4,∞). If VarHs = Ω(s), then

dK

(
Hs − EHs√

VarHs
, N(0, 1)

)
≤ c√

s
, s ≥ 1.

Question: what are good proximity bounds for

dK

(
Hs − EHs√

s
,N(0, 1)

)
?

Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 9 / 32



Rates of univariate normal convergence

Psg, a Poisson point process on W with intensity sg; where g : W → R+.

Put Hs := Hs(Psg) :=
∑

x∈Psg
ξs(x,Psg).

Theorem (Lachieze-Rey, Schulte + Y. (2019)) Assume (ξs), s ≥ 1, are
exponentially stabilizing and satisfy the p-moment condition for some
p ∈ (4,∞). If VarHs = Ω(s), then

dK

(
Hs − EHs√

VarHs
, N(0, 1)

)
≤ c√

s
, s ≥ 1.

Question: what are good proximity bounds for

dK

(
Hs − EHs√

s
,N(0, 1)

)
?

Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 9 / 32



Rates of univariate normal convergence

Psg, a Poisson point process on W with intensity sg; where g : W → R+.

Put Hs := Hs(Psg) :=
∑

x∈Psg
ξs(x,Psg).

Theorem (Lachieze-Rey, Schulte + Y. (2019)) Assume (ξs), s ≥ 1, are
exponentially stabilizing and satisfy the p-moment condition for some
p ∈ (4,∞). If VarHs = Ω(s), then

dK

(
Hs − EHs√

VarHs
, N(0, 1)

)
≤ c√

s
, s ≥ 1.

Question: what are good proximity bounds for

dK

(
Hs − EHs√

s
,N(0, 1)

)
?

Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 9 / 32



Multivariate CLT without rates

Recall H
(i)
s := H

(i)
s (Psg) :=

∑
x∈Psg∩Ai

ξ
(i)
s (x,Psg), s ≥ 1.

Centered version: H̄
(i)
s := H

(i)
s − EH(i)

s .

Thm (Penrose; Baryshnikov + Y.) Assume (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1, are

(i) exponentially stabilizing, and
(ii) satisfy the p-moment condition for some p > 2.

Then for all i, j ∈ {1, ...,m} as s→∞ we have

Cov(H
(i)
s , H

(j)
s )

s
→ σij , s−1/2(H̄(1)

s , ..., H̄(m)
s )

D−→ NΣ,

where NΣ is multivariate normal with covariance matrix

Σ = (σij)1≤i,j≤m.
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Three distances between m-dimensional vectors

(i) H(2)
m : all C2-functions h : Rm → R such that

|h(x)− h(y)| ≤ ||x− y||, x, y ∈ Rm,

sup
x∈Rm

||Hess h(x)||op ≤ 1.

Given m-dimensional random vectors Y, Z we put

d2(Y,Z) := sup
h∈H(2)

m

|Eh(Y )− Eh(Z)|

if E ||Y ||,E ||Z|| <∞.
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Three distances between m-dimensional vectors

(ii) H(3)
m : all C3-functions h : Rm → R such that absolute values of the

second and third partial derivatives are bounded by 1.

Given m-dimensional random vectors Y, Z we put

d3(Y,Z) := sup
h∈H(3)

m

|Eh(Y )− Eh(Z)|

if E ||Y ||2,E ||Z||2 <∞.

(iii)
dconvex(Y,Z) := sup

h∈I
|Eh(Y )− Eh(Z)|,

where I is the set of indicators of convex sets in Rm.
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Main Theorem: Rates of Multivariate Normal Convergence

Recall H
(i)
s := H

(i)
s (Psg) :=

∑
x∈Psg∩Ai

ξ
(i)
s (x,Psg), s ≥ 1.

Cov(H
(i)
s , H

(j)
s )

s
→ σij , s−1/2(H̄(1)

s , ..., H̄(m)
s )

D−→ NΣ.

· Assume Σ = (σij)1≤i,j≤m is positive definite.

Theorem (Schulte + Y.) Assume (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1 are

(i) exponentially stabilizing, and
(ii) satisfy the p-moment condition for some p > 6.

Then there is a constant C ∈ (0,∞) such that

d̃(s−1/2(H̄(1)
s , ..., H̄(m)

s ), NΣ) ≤ Cs−1/d, s ≥ 1, (∗)

for d̃ ∈ {d2, d3, dconvex}.
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Two remarks

H(i)
s := H(i)

s (Psg) :=
∑

x∈Psg∩Ai

ξ(i)
s (x,Psg), s ≥ 1.

(i) A main ingredient to the proof: For all i, j ∈ {1, ...,m}∣∣∣∣∣σij − Cov(H
(i)
s , H

(j)
s )

s

∣∣∣∣∣ ≤ Cs−1/d, s ≥ 1.

(ii) If we replace NΣ by NΣ(s), where Σ(s) is the covariance matrix of

s−1/2(H̄(1)
s , ..., H̄(m)

s ),

then the rates of multivariate normal convergence improve to

d̃(s−1/2(H̄(1)
s , ..., H̄(m)

s ), NΣ(s)) ≤ Cs−1/2, s ≥ 1,

for d̃ ∈ {d2, d3, dconvex}. Rates are not improvable in general.
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Literature

· Multivariate clts for vectors with certain dependency structures: Raic̆
(2004), Goldstein and Rinott (2005), Chen, Goldstein, and Shao (2011)

· Penrose and Wade (2008): consider the special case ξ
(1)
s = ... = ξ

(m)
s

and all sets Ai, i ∈ {1, ...,m}, are disjoint. They establish rate of normal
convergence O(s−1/(2d+ε)), ε > 0, wrt Kolmogorov distance in Rd.

· Peccati and Zheng (2010)

· Hug, Last, Schulte (2016): establish rates with respect to d3 which
depend on knowledge of Wiener-Itô chaos expansion.
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· Peccati and Zheng (2010)

· Hug, Last, Schulte (2016): establish rates with respect to d3 which
depend on knowledge of Wiener-Itô chaos expansion.
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CLTs for Poisson functionals, Malliavin calculus

· Goal: Find rates of multivariate normal approximation for

s−1/2(H̄
(1)
s , ..., H̄

(m)
s ); each H

(i)
s is a function of Psg and is thus a Poisson

functional.

· We first prove rates of multivariate normal approximation for a vector of
general Poisson functionals.

· η a Poisson process over (X,F) with intensity measure λ; thus |η ∩A| is
Poisson distributed with parameter λ(A), A ∈ F .

· F = (F1, .., Fm), m ∈ N, a vector of (Poisson) functionals of η if each Fi
is represented as a measurable function fi of η.

· DxFi := fi(η ∪ {x})− fi(η).

· D2
x,yFi := fi(η ∪ {x} ∪ {y})− fi(η ∪ {x})− fi(η ∪ {y}) + fi(η).
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CLTs for Poisson functionals, Malliavin calculus

· Peccati and Zheng (2010): η a Poisson process over (X,F) with
intensity measure λ.

· F = (F1, .., Fm), m ∈ N, a vector of (Poisson) functionals of η.

· EFi = 0, Σ = (σi,j)i,j∈{1,...,m} positive definite matrix. Put

β1 :=

√√√√ m∑
i,j=1

E (σi,j −
∫
X
DxFi(−DxL−1Fj)λ(dx))2

β2 :=

∫
X
E (

m∑
i=1

|DxFi|)2
m∑
j=1

|DxL
−1Fj |λ(dx).

· Then d2(F,NΣ) and d3(F,NΣ) are both bounded by C(m,Σ) · (β1 +β2).

· Last, Peccati, Schulte (2016): E |DxL
−1F |p and E |D2

x,yL
−1F |p

bounded by moments of difference operators.
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CLT for general Poisson functionals

Theorem (Schulte and Y.) Let F = (F1, . . . , Fm), m ∈ N, be a vector
of Poisson functionals; EFi = 0, i ∈ {1, . . . ,m}. Let
Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be positive definite. Then

d3(F,NΣ) ≤ m

2

m∑
i,j=1

|σij − Cov(Fi, Fj)|+mγ1 +
m

2
γ2 +

m2

4
γ3.
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CLT for general Poisson functionals

Here

γ1 :=

( m∑
i,j=1

∫
X3

(
E (D2

x1,x3Fi)
2(D2

x2,x3Fi)
2
)1/2

×
(
E (Dx1Fj)

2(Dx2Fj)
2
)1/2

λ3(d(x1, x2, x3))

)1/2

γ2 :=

( m∑
i,j=1

∫
X3

(
E (D2

x1,x3Fi)
2(D2

x2,x3Fi)
2
)1/2

×
(
E (D2

x1,x3Fj)
2(D2

x2,x3Fj)
2
)1/2

λ3(d(x1, x2, x3))

)1/2

γ3 :=

m∑
i=1

∫
X
E |DxFi|3 λ(dx)
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Special case: CLT for vector of stabilizing functionals

H(i)
s := H(i)

s (Psg) :=
∑

x∈Psg∩Ai

ξ(i)
s (x,Psg), s ≥ 1.

· Let Fi := s−1/2H̄
(i)
s . Fi is a sum of stabilizing scores. Put X to be

window W , put λ(dx) to be sg(x)dx. Then the integrals of moments of
difference operators are O(s−1/2).

· Schulte + Y show γ1, γ2, γ3 are all O(s−1/2). Thus

d3(F,NΣ) ≤ m

2

m∑
i,j=1

|σij − Cov(Fi, Fj)|+mγ1 +
m

2
γ2 +

m2

4
γ3

= O(s−1/d) +O(s−1/2).
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Main thm for dconvex

Theorem (Schulte + Y.) Let F = (F1, . . . , Fm), m ∈ N, be a vector of
Poisson functionals F1, . . . , Fm with EFi = 0, i ∈ {1, . . . ,m}.

If Σ ∈ Rm×m is positive definite then there exists a constant C ∈ (0,∞)
depending on m and Σ such that

dconvex(F,NΣ)

≤ C max

{ ∑
i,j∈{1,...,m}

|σij − Cov(Fi, Fj)|, γ1, γ2, γ̃3, γ4, γ5

}
.
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Main thm for dconvex

Here the terms γ1, γ2, γ̃3, γ4, γ5 are integrals of products of moments of
difference operators applied to the Poisson functionals F1, ..., Fm. For
example,

γ̃3 := [

m∑
j,k=1

∫
X
E (DxFj)

4λ(dx)

+
15

4

∫
X2

(ED2
x,yFj)

4)1/2(E (DxFk)
4)1/2λ2(d(x, y))

+
3

4

∫
X2

(ED2
x,yFj)

4)1/2(E (Dx,yFk)
4)1/2λ2(d(x, y))]1/2.

Fortunately, one may control the order of growth of the terms γ1, ...., γ5

when the Poisson functionals Fi are sums of stabilizing score functions.

Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 22 / 32



Main thm for dconvex

Here the terms γ1, γ2, γ̃3, γ4, γ5 are integrals of products of moments of
difference operators applied to the Poisson functionals F1, ..., Fm. For
example,

γ̃3 := [

m∑
j,k=1

∫
X
E (DxFj)

4λ(dx)

+
15

4

∫
X2

(ED2
x,yFj)

4)1/2(E (DxFk)
4)1/2λ2(d(x, y))

+
3

4

∫
X2

(ED2
x,yFj)

4)1/2(E (Dx,yFk)
4)1/2λ2(d(x, y))]1/2.

Fortunately, one may control the order of growth of the terms γ1, ...., γ5

when the Poisson functionals Fi are sums of stabilizing score functions.

Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 22 / 32



dconvex applied to stabilizing functionals H
(i)
s

Let Fi := s−1/2H̄
(i)
s ; H

(i)
s :=

∑
x∈Psg∩Ai

ξ
(i)
s (x,Psg).

Then max(γ1, ..., γ5) = O(s−1/2).

Theorem (Schulte + Y; 2019) Assume (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1 are

(i) exponentially stabilizing, and
(ii) satisfy the p-moment condition for some p > 6.

Then there is a constant C ∈ (0,∞) such that

dconvex(s−1/2(H̄(1)
s , ..., H̄(m)

s ), NΣ) ≤ Cs−1/d, s ≥ 1

and
dconvex(s−1/2(H̄(1)

s , ..., H̄(m)
s ), NΣ(s)) ≤ Cs−1/2, s ≥ 1,

where Σ(s) is the covariance matrix of s−1/2(H̄
(1)
s , ..., H̄

(m)
s ).
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Applications

(i) Multivariate statistics of kNN graph. Let k ∈ N and X ⊂ Rd a
finite point set. For x, y ∈ X , we put an undirected edge between x and y
if x is one of the k nearest neighbors of y and/or y is a k nearest neighbor
of x.

Put

H(k)(X ) := sum of lengths of edges in kNN on X .

Theorem. Let Psg be a Poisson point process on [0, 1]d with intensity sg,
g bounded away from 0 and ∞. Then for all ki ∈ N, 1 ≤ i ≤ m, we have

d̃(s−1/2(H̄(k1)
s (Psg), ..., H̄(km)

s (Psg)), NΣ) ≤ Cs−1/d, s ≥ 1,

for d̃ ∈ {d2, d3, dconvex}.
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Applications

(ii) Multivariate statistics of random geometric graph. Fix r > 0. Let

X ⊂ Rd be a finite point set. Put N
(i)
s (X ) to be the number of

components of random geometric graph G(s1/dX , s1/dr) of size i.

Theorem. Let Psg be a Poisson point process on [0, 1]d with intensity sg,
g bounded away from 0 and ∞. When r = ρs−1/d we have for all ij ∈ N,
1 ≤ j ≤ m

d̃(s−1/2(N̄ (i1)
s (Psg), ..., N̄ (im)

s (Psg)), NΣ) ≤ Cs−1/d, s ≥ 1,

for d̃ ∈ {d2, d3, dconvex}.
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Proof idea for dconvex

· 1. Stein: Let F = (F1, ..., Fm) be a vector of Poisson functionals; let
Σ ∈ Rm×m be positive definite; h : Rm → R.

· To assess the difference Eh(F )− E (h(NΣ)), where h belongs to a class
of test functions, it is enough to assess the difference

E
m∑
i=1

Fi
∂fh
∂yi

(F )− ∂2fh
∂y2

i

(F ),

where fh : Rm → R is a solution of the multivariate Stein equation:

m∑
i=1

yi
∂f

∂yi
(y)− ∂2f

∂y2
i

(y) = h(y)− Eh(NΣ), y ∈ Rm.

· Given t ∈ (0, 1), and test function h, we introduce its smoothed version

ht,Σ(y) :=

∫
Rm

h(
√
tz +

√
1− ty)φΣ(z)dz,

where φΣ(z) is the density of NΣ.
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Proof idea for dconvex

· 2. Smoothing lemma: Let I be collection of indicators of convex sets
in Rm.

dconvex(F,NΣ) ≤ 4

3
sup
h∈I
|Eht,Σ(F )− Eht,Σ(NΣ)|+ 20√

2
m

√
t

1− t
.

So it is enough to assess the difference of expectations over the smooth
class of test functions ht,Σ. This is accomplished with:

· 3. Peccati + Zheng (Malliavin calculus on Poisson space):

Eht,Σ(F )− Eht,Σ(NΣ) =
m∑

i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F )

−
m∑
k=1

E
∫
X
Dx

∂ft,h,Σ
∂yk

(F )(−DxL
−1Fk)λ(dx).

· Here ft,h,Σ is the sol. to the MV Stein eq. associated with ht,Σ.

Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 27 / 32



Proof idea for dconvex

· 2. Smoothing lemma: Let I be collection of indicators of convex sets
in Rm.

dconvex(F,NΣ) ≤ 4

3
sup
h∈I
|Eht,Σ(F )− Eht,Σ(NΣ)|+ 20√

2
m

√
t

1− t
.

So it is enough to assess the difference of expectations over the smooth
class of test functions ht,Σ. This is accomplished with:

· 3. Peccati + Zheng (Malliavin calculus on Poisson space):

Eht,Σ(F )− Eht,Σ(NΣ) =

m∑
i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F )

−
m∑
k=1

E
∫
X
Dx

∂ft,h,Σ
∂yk

(F )(−DxL
−1Fk)λ(dx).

· Here ft,h,Σ is the sol. to the MV Stein eq. associated with ht,Σ.
Joseph Yukich (joint with Matthias Schulte) (Lehigh University )Rates of Multivariate Normal Approximation for Statistics in Geometric ProbabilityEuler International Mathematical Institute 27 / 32



Proof idea for dconvex

4. Good sup norm and L2 bounds on the 2nd derivatives of ft,h,Σ.

Eht,Σ(F )− Eht,Σ(NΣ) =

m∑
i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F )

−
m∑
k=1

E
∫
X
Dx

∂ft,h,Σ
∂yk

(F )(−DxL
−1Fk)λ(dx).

However,

sup
h∈I

E
m∑

i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(F )

)2

≤ ||Σ−1||2op
(
m2(log t)2dconvex(F,NΣ) + 444m23/6

)
.

Combine steps 2, 3, 4 and choose parameter t in the right way.
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Summary

Psg, a Poisson point process on W with intensity sg.

H(i)
s := H(i)

s (Psg) :=
∑

x∈Psg∩Ai

ξ(i)
s (x,Psg), Ai ⊂W.

We have found presumably optimal rates of multivariate normal
convergence for the vector(

H
(1)
s − EH(1)

s√
s

, ...,
H

(m)
s − EH(m)

s√
s

)
, as intensity s→∞.

We needed to show that the scores satisfy two conditions:

(i) exponential stabilization
(ii) moment conditions.
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Summary

Extensions:
(i) points in Psg may carry independent marks

(ii) rates of multivariate normal convergence for random measures

µ(i)
s (Psg) :=

∑
x∈Psg∩Ai

ξ(i)
s (x,Psg)δx, Ai ⊂W.

(iii) to be done: replace Psg by more general input, including binomial
input, Gibbsian input, and input with fast decaying correlations.
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THANK YOU
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Applications

(iii) Multivariate statistics for equality of distributions. Let X ⊂ Rd
be a finite point set. Consider the undirected nearest neighbors graph
NNG(X ) on X . Color the nodes of X with color i with probability
πi, 1 ≤ i ≤ m.

Let H(i)(X ) be the number of edges in NNG(X ) which join nodes of
color i, 1 ≤ i ≤ m.

Theorem. Let Psg be a Poisson point process on [0, 1]d with intensity sg,
g ∈ Lip([0, 1]d), g bounded away from 0 and ∞. We have

d̃(s−1/2(H̄(1)
s (Psg), ..., H̄(m)

s (Psg)), NΣ) ≤ Cs−1/d, s ≥ 1,

for d̃ ∈ {d2, d3, dconvex}.

This vector features in tests for equality of distributions.
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