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Bernoulli fields

Let X = (X1, . . . ,Xn),n ∈ N, are independent Bern(p) r.v.’s on
Ω = {0,1}n. Let X(i) (resp. X (i)) be a vector whose entries
coincide with those of X except at the i-th coordinate, where
the entry is 0 (resp. 1). For an event A ⊆ Ω denote

N+
A :=

n∑
i=1

1I{X (i) ∈ A,X(i) /∈ A},

N−A :=
n∑

i=1

1I{X(i) ∈ A,X (i) /∈ A}.

Definition

The coordinates i which contribute non-zero terms to N+
A (resp.,

to N−A ) are called (+)-pivotal (resp., (−)-pivotal) for even A.
Sergei Zuyev Perturbation formula in SG



Variational analysis for Bernoulli fields
Poisson process

Applications
Stable vectors

Crofton’s derivative formula

Variation formula

Margulis–Russo formula

d
dp

Pp(A) = Ep[N+
A − N−A ], (1)

where Ep denotes expectation with respect to the distribution
Pp of X .

Its power is that it relates the probability of event to the
geometry of the paths realising it. Many results in Percolation
theory are obtained using it.
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Binomial distribution

Let Sn = X1 + . . .+ Xn and A = {Sn ≥ k}. Then

N+
A =


n − k + 1, if Sn = k − 1,
k , if Sn = k ,
0, otherwise.

Since A is increasing event, N−A = 0 and

d
dp

Pp(A) = Ep N+
A = (n − k + 1)Pp{Sn = k − 1}+ kPp{Sn = k}

=
n!

(k − 1)!(n − k)!
pk−1(1− p)n−k .
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Integral representation

Since P0(A) = 0,

Pp{Sn ≥ k} =
n!

(k − 1)!(n − k)!

∫ p

0
tk−1(1− t)n−kdt , k ∈ {1, . . . ,n}.

Similarly, if Zn follows the Negative Binomial NB(r ,p)
distribution,

Pp{Zn ≥ k} =
(k + r − 1)!

(k − 1)!(r − 1)!

∫ p

0
t r−1(1− t)k−1dt , k ∈ N.
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Poisson process

Let λ be a fixed σ-finite measure on some measurable space X
and θ ≥ 0. Consider a Poisson point process η ∼ PPP(θλ) on
X with intensity measure θλ. The corresponding distribution
and expectation are denoted by Pθ and Eθ. If A is a cylinder
event, then (1) holds with

N+
A :=

∫
1I{η + δz ∈ A, η /∈ A}λ(dz),

N−A :=

∫
1I{η ∈ A, η + δz /∈ A}λ(dz),
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Margulis–Russo analogue for PPP

By Mecke formula,

Eθ N+
A =

1
θ

Eθ
∫

1I{η ∈ A, η − δz /∈ A}η(dz),

SZ’93

d
dθ

Pθ(A) =
1
θ

Eθ
∫

1I{η ∈ A, η − δz /∈ A}η(dz)

− Eθ
∫

1I{η ∈ A, η + δz /∈ A}λ(dz). (2)
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Pivotality

So, analogously to the Bernoulli case, the process points zi ∈ η
such that η ∈ A, but η − δzi /∈ A maybe called pivotal points,
whereas z ∈ X such that η ∈ A, but η + δz /∈ A are called pivotal
locations.

Formula (2) is a particular case of variation formula for Eθ g(η),
when the functional g = 1IA.
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Difference operators

Let N be the set of configurations and g : N 7→ R be a
measurable mapping. For z ∈ X, introduce the difference
operator g 7→ Dzg:

Dzg(ϕ) = g(ϕ+ δz)− g(ϕ)

and its iterations:

Dk
z1,...,zk

g = Dzk Dk−1
z1,...,zk−1

g (z1, . . . , zk ) ∈ Xk .
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Variation formula

Given any σ-finite measure ρ on X, denote ηρ ∼ PPP(ρ).

G. Last’14
Let λ be a σ-finite and let ν be a finite measure on X. Let
g : N→ R be a measurable function such that E |g(ηλ+ν)| <∞.
Let θ ∈ (−∞,1] such that λ+ θν > 0. Then

E f (ηλ+θν) = E f (ηλ)+
∞∑

k=1

θk

k !

∫
E Dk

x1,...,xk
f (ηλ) νk (d(x1, . . . , xk )),

where the series converges absolutely.
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Derivatives

If E |g(ηθ0λ)| <∞ for some θ0 > 0, then for any θ < θ0,

dk

dθk E g(ηθλ) =

∫
· · ·
∫

E Dk
z1,...,zk

g(ηθλ)λ(dz1) · · ·λ(dzk ).

In particular,

d
dθ

∣∣∣∣
θ=1

E g(ηθλ) =

∫
E[g(ηλ + δz)− g(ηλ)]λ(dz).

Quite often, E Dzg is easier to compute than E g because the
influence to g of added δz may be local.
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Warm-up: Poisson distribution

Let X be a one-point set and λ is a unit mass on it. Then
ηθ ∼ Po(θ). Consider A = {ηθ ≥ k}. Since

1IA(η + δz)− 1IA(η) = 1I{η{z} = k − 1},

then

P{ηθ ≥ k} =

∫ θ

0

d
dt

P{ηt ≥ k} =

∫ θ

0

tk−1

(k − 1)!
e−tdt .
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Erland distribution

By similar consideration, for ζ ∼ Er(n, θ) = Γ(n, θ),

P{ζ ≥ k} =
xn

(n − 1)!

∫ θ

0
tn−1e−txdt , x ≥ 0.
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Compound Poisson distribution

Let ξi are i.i.d. with distribution Q on R with Q{0} = 0 and
Zθ =

∑ν
k=1 ξi , where ν ∼ Po(θ). Then Z ∼ CPo(θ,Q), let

F (θ,Q; x) be its c.d.f.
Take X := R and η ∼ PPP(Q). Then Zθ

D
=
∫

z η(dz). Consider
the event A := {Zθ ≤ x}, x ∈ R. Then, for z ∈ R,

1IA(η + δz)− 1IA(η) = 1I{Zθ > x ,Zθ + z ≤ x} − 1I{Zθ ≤ x ,Zθ + z > x};
d
dθ

Pθ(A) = Eθ
∫
R\{0}

1I{Zθ + z ≤ x}Q(dz)− Pθ(Zθ ≤ x).

d
dθ

F (θ,Q; x) =

∫
F (θ,Q; x − z) Q(dz)− F (θ,Q; x).
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Strictly α-stable laws

Definition
A random vector ξ (or its distribution) is called strictly α-stable
(StαS), if the following equality in distribution holds:

t1/αξ′ + (1− t)1/αξ′′
D
= ξ 0 ≤ t ≤ 1,

where ξ′, ξ′′ are independent distributional copies of ξ.

In Euclidean spaces StαS laws exist only for 0 < α ≤ 2 and
α = 2 corresponds to the Gaussian distribution centred at the
origin.
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LePage representation

Symmetrical StαS random vectors in Rn with α < 2 and all
StαS random vectors with α < 1 admit the following LePage
series representation:

ξ := ξθ
D
=

∫
u ηθ(du), (3)

where ηθ ∼ PPP(Λθ), where

Λθ := θ

∫
Sn−1

∫ ∞
0

1I{t−1/αu ∈ ·}dt σ̂(du)

is the Lévy measure on Rn \ {0} with σ = θσ̂ on the sphere
Sn−1 called the spectral measure.
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Thus the radial component of ηθ follows PPP with intensity
measure θµα with µα[x ,+∞) = x−1/α and the angular
component follows the distribution σ̂.

Let Sσ be the support of the spectral measure σ. The
corresponding stable law is non-degenerate if

K := cone(Sσ) = {x ∈ Rn : |x | > 0, x/|x | ∈ Sσ}

has a positive n-volume. It is known that non-degenerate stable
laws possess an infinitely differentiable density in its interior.
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Density equations in Rn

(i) The density fθ of ξθ satisfies

nfθ(x)+〈x ,∇fθ(x)〉 = α

∫
[fθ(x)−fθ(x−z)] Λθ(dz), x ∈ Int(K ),

where 〈· , ·〉 is the scalar product in Rn.
(ii) Let f|ξθ| denote the p.d.f. of the radius vector |ξθ|. Then for

all r > 0,

rf|ξθ|(r) = α

∫ [
P
(
|ξθ| ≤ r

)
− P

(
|ξθ + z| ≤ r

)]
Λθ(dz).
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Density equations in R+

The c.d.f. Fθ and the p.d.f. fθ of a positive StαS on R+ with
0 < α < 1 are related through

fθ(x) + xf ′θ(x) = α2θ

∫ x

0
[fθ(x)− fθ(x − z)]z−α−1 dz;

xfθ(x) = θα2
∫ x

0

[
Fθ(x)− Fθ(x − z)

]
z−α−1 dz for all x > 0,
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Outline of the proof

Similarly to CPo, write

d
dθ

P(ξθ ∈ B) =

∫ [
P(ξθ + z ∈ B)− P(ξθ ∈ B)

]
Λ1(dz)

=
1
θ

∫
[P(ξθ ∈ B − z)− P(ξθ ∈ B)] Λθ(dz)

and use the scaling ξθ
D
= θ1/αξ1, so that the density and its

gradient satisfy

fθ(x) = θ−d/αf1(θ−1/αx),

∇fθ(x) = θ−(n+1)/α∇f1(θ−1/αx).
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Crofton’s derivative formula

Consider m points uniformly and independently distributed in a
finite volume K ⊂ Rn (Binomial point process). Assume we
want to compute the probability P that these points satisfy
certain property, e. g. the probability that the convex hull of
m = 4 points is a triangle. Now expand monotonely the domain
K to Kt ⊃ K with ∩t>0Kt = K . The Crofton’s derivative formula
relates the new probability Pt to satisfy the property when the
points are now distributed in a larger domain Kt when t ↓ 0.

Intuitively, the difference in Pt and P is due to: 1) the new scale
factor due to the increase of volume of the domain; and 2) new
possible configurations with points in Kt \ K . In the first order
approximation, only one point in Kt \ K matters. Its distribution
should depend on the exact form of the expansion of K .
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Settings

We consider a compact set K and Kt = K + b(0, t) – the
t-parallel set of K ⊂ Rd .

Let h : Rn → [0,∞) be a continuous function and let λ be the
measure on Rn with Lebesgue density h.

For t ≥ 0 let λt be the restriction of λ to Kt and ηt be a Poisson
process with intensity measure λt . Let Hn−1 denote the
Hausdorff measure.
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Crofton formula for Poisson functionals

Assume, for simplicity, that K is a body, i. e. cl
◦
K = K .

If g(ηt + δx ) is continuous in x ∈ Kt0 for some t0 > 0, and there
exists c > 0 such that∣∣E Dk

x1,...,xk
g(ηt )

∣∣ ≤ ck , x1, . . . , xk ∈ Kt0 , t ≤ t0, k ∈ N.

then for all 0 < t < t0

d
dt

E g(ηt ) =

∫
∂Kt

E
[
g(ηt + δx )− g(ηt )

]
h(x)Hn−1(dx).

Under additional technical assumptions, this is also true for
K0 = K .
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Crofton formula for Binomial process

Consider a binomial processes BPP(m, λt )

ξ
(m)
t = δX1 + · · ·+ δXm ,

where Xi ∼ λt/λt (Kt ) are i.i.d. r.v.’s in Rn.

If g is bounded and x 7→ E g(ξ
(m−1)
t + δx ) is continuous on Kt0

for each t < t0, then

d
dt

E g(ξ
(m)
t ) =

m
λ(Kt )

∫
∂Kt

E
[
g(ξ

(m−1)
t +δx )−g(ξ

(m)
t )

]
h(x)Hn−1(dx).
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The proof uses the generalisation of the Steiner formula to
non-convex sets [Hug, Last, Weil’04]. For bodies, the last
theorem follows from [Baddeley’77], but we can also covers
general closed sets. It this case, the integral above is over the
set of ∂1K of boundary points which have a unique outward
‘normal’ in the positive reach sence plus twice the integral over
∂2K that have two normals.
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