Variational analysis for Bernoulli fields
Poisson process
Applications
Stable vectors
Crofton's derivative formula

Applications of the perturbation formula for Poisson processes to elementary and geometric probability

Günter Last¹ Sergei Zuyev²

¹Karlsruhe Institute of Technology, Germany ²Chalmers University of Technology, Sweden

September 19th 2019

Bernoulli fields

Let $X = (X_1, \dots, X_n), n \in \mathbb{N}$, are independent Bern(p) r.v.'s on $\Omega = \{0, 1\}^n$. Let $X_{(i)}$ (resp. $X^{(i)}$) be a vector whose entries coincide with those of X except at the i-th coordinate, where the entry is 0 (resp. 1). For an event $A \subseteq \Omega$ denote

$$N_A^+ := \sum_{i=1}^n \mathbb{1}\{X^{(i)} \in A, X_{(i)} \notin A\},$$

$$N_A^- := \sum_{i=1}^n \mathbb{1}\{X_{(i)} \in A, X^{(i)} \notin A\}.$$

Definition

The coordinates i which contribute non-zero terms to N_A^+ (resp., to N_A^-) are called (+)-pivotal (resp., (-)-pivotal) for even A.

Crofton's derivative formula

Variation formula

Margulis-Russo formula

$$\frac{d}{dp}\mathbf{P}_{p}(A) = \mathbf{E}_{p}[N_{A}^{+} - N_{A}^{-}], \tag{1}$$

where \mathbf{E}_{p} denotes expectation with respect to the distribution \mathbf{P}_{p} of X.

Its power is that it relates the probability of event to the geometry of the paths realising it. Many results in Percolation theory are obtained using it.

Binomial distribution

Let
$$S_n = X_1 + \ldots + X_n$$
 and $A = \{S_n \ge k\}$. Then

$$N_A^+ = \begin{cases} n-k+1, & \text{if } S_n = k-1, \\ k, & \text{if } S_n = k, \\ 0, & \text{otherwise.} \end{cases}$$

Since A is increasing event, $N_A^- = 0$ and

$$\frac{d}{dp}\mathbf{P}_{p}(A) = \mathbf{E}_{p} N_{A}^{+} = (n-k+1)\mathbf{P}_{p}\{S_{n} = k-1\} + k\mathbf{P}_{p}\{S_{n} = k\}$$

$$= \frac{n!}{(k-1)!(n-k)!}p^{k-1}(1-p)^{n-k}.$$

Since
$$\mathbf{P}_0(A) = 0$$
,

$$\mathbf{P}_{p}\{S_{n} \geq k\} = \frac{n!}{(k-1)!(n-k)!} \int_{0}^{p} t^{k-1} (1-t)^{n-k} dt, \quad k \in \{1,\ldots,n\}.$$

Similarly, if Z_n follows the Negative Binomial NB(r, p) distribution,

$$\mathbf{P}_{p}\{Z_{n} \geq k\} = \frac{(k+r-1)!}{(k-1)!(r-1)!} \int_{0}^{p} t^{r-1} (1-t)^{k-1} dt, \quad k \in \mathbb{N}.$$

Poisson process

Let λ be a fixed σ -finite measure on some measurable space $\mathbb X$ and $\theta \geq 0$. Consider a Poisson point process $\eta \sim \mathsf{PPP}(\theta\lambda)$ on $\mathbb X$ with intensity measure $\theta\lambda$. The corresponding distribution and expectation are denoted by \mathbf{P}_{θ} and \mathbf{E}_{θ} . If A is a cylinder event, then (1) holds with

$$N_A^+ := \int \mathbb{1} \{ \eta + \delta_z \in A, \eta \notin A \} \lambda(dz),$$

$$N_A^- := \int \mathbb{1} \{ \eta \in A, \eta + \delta_z \notin A \} \lambda(dz),$$

Margulis-Russo analogue for PPP

By Mecke formula,

$$\mathbf{E}_{ heta} \, \mathsf{N}_{\mathsf{A}}^{+} = rac{1}{ heta} \, \mathbf{E}_{ heta} \int 1\!\!1 \{ \eta \in \mathsf{A}, \eta - \delta_{\mathsf{Z}}
otin \mathsf{A} \} \eta(\mathsf{d}\mathsf{z}),$$

SZ'93

$$\frac{d}{d\theta}\mathbf{P}_{\theta}(A) = \frac{1}{\theta} \mathbf{E}_{\theta} \int \mathbb{1}\{\eta \in A, \eta - \delta_z \notin A\} \eta(dz) - \mathbf{E}_{\theta} \int \mathbb{1}\{\eta \in A, \eta + \delta_z \notin A\} \lambda(dz). \quad (2)$$

Pivotality

So, analogously to the Bernoulli case, the process points $z_i \in \eta$ such that $\eta \in A$, but $\eta - \delta_{z_i} \notin A$ maybe called pivotal points, whereas $z \in \mathbb{X}$ such that $\eta \in A$, but $\eta + \delta_z \notin A$ are called pivotal locations.

Formula (2) is a particular case of variation formula for $\mathbf{E}_{\theta} g(\eta)$, when the functional $g = \mathbb{1}_A$.

Difference operators

Let **N** be the set of configurations and $g: \mathbf{N} \mapsto \mathbb{R}$ be a measurable mapping. For $z \in \mathbb{X}$, introduce the difference operator $g \mapsto D_z g$:

$$D_z g(\varphi) = g(\varphi + \delta_z) - g(\varphi)$$

and its iterations:

$$D^k_{z_1,...,z_k}g = D_{z_k}D^{k-1}_{z_1,...,z_{k-1}}g \quad (z_1,...,z_k) \in \mathbb{X}^k.$$

Variation formula

Given any σ -finite measure ρ on \mathbb{X} , denote $\eta_{\rho} \sim \mathsf{PPP}(\rho)$.

G. Last'14

Let λ be a σ -finite and let ν be a finite measure on \mathbb{X} . Let $g \colon \mathbf{N} \to \mathbb{R}$ be a measurable function such that $\mathbf{E} \, |g(\eta_{\lambda+\nu})| < \infty$. Let $\theta \in (-\infty, 1]$ such that $\lambda + \theta \nu > 0$. Then

$$\mathbf{E} f(\eta_{\lambda+\theta\nu}) = \mathbf{E} f(\eta_{\lambda}) + \sum_{k=1}^{\infty} \frac{\theta^k}{k!} \int \mathbf{E} D_{x_1,\dots,x_k}^k f(\eta_{\lambda}) \, \nu^k (d(x_1,\dots,x_k)),$$

where the series converges absolutely.

Derivatives

If $\mathbf{E} |g(\eta_{\theta_0\lambda})| < \infty$ for some $\theta_0 > 0$, then for any $\theta < \theta_0$,

$$rac{d^k}{d heta^k} \, \mathbf{E} \, g(\eta_{ heta\lambda}) = \int \cdots \int \mathbf{E} \, D^k_{z_1, \dots, z_k} g(\eta_{ heta\lambda}) \, \lambda(dz_1) \cdots \lambda(dz_k).$$

In particular,

$$\left. rac{d}{d heta} \right|_{ heta=1} \mathsf{E} \, g(\eta_{ heta\lambda}) = \int \mathsf{E} [g(\eta_{\lambda} + \delta_z) - g(\eta_{\lambda})] \, \lambda(dz).$$

Quite often, **E** $D_z g$ is easier to compute than **E** g because the influence to g of added δ_z may be local.

Warm-up: Poisson distribution

Let $\mathbb X$ be a one-point set and λ is a unit mass on it. Then $\eta_{\theta} \sim \mathsf{Po}(\theta)$. Consider $A = \{\eta_{\theta} \geq k\}$. Since

$$1_A(\eta + \delta_Z) - 1_A(\eta) = 1_A(\eta) = k - 1,$$

then

$$\mathbf{P}\{\eta_{\theta} \geq k\} = \int_0^{\theta} \frac{d}{dt} \mathbf{P}\{\eta_t \geq k\} = \int_0^{\theta} \frac{t^{k-1}}{(k-1)!} e^{-t} dt.$$

Crofton's derivative formula

Erland distribution

By similar consideration, for $\zeta \sim \text{Er}(n, \theta) = \Gamma(n, \theta)$,

$$\mathbf{P}\{\zeta \ge k\} = \frac{x^n}{(n-1)!} \int_0^{\theta} t^{n-1} e^{-tx} dt, \quad x \ge 0.$$

Compound Poisson distribution

Let ξ_i are *i.i.d.* with distribution Q on \mathbb{R} with $Q\{0\} = 0$ and $Z_{\theta} = \sum_{k=1}^{\nu} \xi_i$, where $\nu \sim \text{Po}(\theta)$. Then $Z \sim \text{CPo}(\theta, Q)$, let $F(\theta, Q; x)$ be its c.d.f.

Take $\mathbb{X} := \mathbb{R}$ and $\eta \sim \mathsf{PPP}(Q)$. Then $Z_{\theta} \stackrel{D}{=} \int z \, \eta(dz)$. Consider the event $A := \{Z_{\theta} \leq x\}, \ x \in \mathbb{R}$. Then, for $z \in \mathbb{R}$,

$$\mathbf{1}_{A}(\eta + \delta_{z}) - \mathbf{1}_{A}(\eta) = \mathbf{1}\{Z_{\theta} > x, Z_{\theta} + z \leq x\} - \mathbf{1}\{Z_{\theta} \leq x, Z_{\theta} + z > x\};
\frac{d}{d\theta} \mathbf{P}_{\theta}(A) = \mathbf{E}_{\theta} \int_{\mathbb{R} \setminus \{0\}} \mathbf{1}\{Z_{\theta} + z \leq x\} Q(dz) - \mathbf{P}_{\theta}(Z_{\theta} \leq x).$$

$$\frac{d}{d\theta}F(\theta,Q;x) = \int F(\theta,Q;x-z) Q(dz) - F(\theta,Q;x).$$

Strictly α -stable laws

Definition

A random vector ξ (or its distribution) is called strictly α -stable (St α S), if the following equality in distribution holds:

$$t^{1/\alpha}\xi' + (1-t)^{1/\alpha}\xi'' \stackrel{D}{=} \xi \quad 0 \le t \le 1,$$

where ξ', ξ'' are independent distributional copies of ξ .

In Euclidean spaces $\operatorname{St} \alpha \operatorname{S}$ laws exist only for $0 < \alpha \le 2$ and $\alpha = 2$ corresponds to the Gaussian distribution centred at the origin.

LePage representation

Symmetrical St α S random vectors in \mathbb{R}^n with $\alpha < 2$ and all St α S random vectors with $\alpha < 1$ admit the following LePage series representation:

$$\xi := \xi_{\theta} \stackrel{D}{=} \int u \, \eta_{\theta}(\mathbf{d}u), \tag{3}$$

where $\eta_{\theta} \sim \mathsf{PPP}(\Lambda_{\theta})$, where

$$\Lambda_{\theta} := \theta \int_{\mathbb{S}^{n-1}} \int_{0}^{\infty} \mathbb{1}\{t^{-1/\alpha} u \in \cdot\} dt \, \hat{\sigma}(du)$$

is the Lévy measure on $\mathbb{R}^n \setminus \{0\}$ with $\sigma = \theta \hat{\sigma}$ on the sphere \mathbb{S}^{n-1} called the spectral measure.

Thus the radial component of η_{θ} follows PPP with intensity measure $\theta \mu_{\alpha}$ with $\mu_{\alpha}[x,+\infty) = x^{-1/\alpha}$ and the angular component follows the distribution $\hat{\sigma}$.

Let S_{σ} be the support of the spectral measure σ . The corresponding stable law is non-degenerate if

$$K := \operatorname{cone}(S_{\sigma}) = \{x \in \mathbb{R}^n : |x| > 0, |x/|x| \in S_{\sigma}\}$$

has a positive *n*-volume. It is known that non-degenerate stable laws possess an infinitely differentiable density in its interior.

Density equations in \mathbb{R}^n

(i) The density f_{θ} of ξ_{θ} satisfies

$$nf_{\theta}(x)+\langle x, \nabla f_{\theta}(x)\rangle = \alpha \int [f_{\theta}(x)-f_{\theta}(x-z)] \Lambda_{\theta}(dz), \quad x \in \text{Int}(K),$$

where $\langle \cdot, \cdot \rangle$ is the scalar product in \mathbb{R}^n .

(ii) Let $f_{|\xi_{\theta}|}$ denote the *p.d.f.* of the radius vector $|\xi_{\theta}|$. Then for all r > 0,

$$rf_{|\xi_{\theta}|}(r) = \alpha \int [\mathbf{P}(|\xi_{\theta}| \leq r) - \mathbf{P}(|\xi_{\theta} + z| \leq r)] \Lambda_{\theta}(dz).$$

Crofton's derivative formula

Density equations in \mathbb{R}_+

The *c.d.f.* F_{θ} and the *p.d.f.* f_{θ} of a positive $\operatorname{St}_{\alpha}\operatorname{S}$ on \mathbb{R}_{+} with $0<\alpha<1$ are related through

$$f_{\theta}(x) + xf'_{\theta}(x) = \alpha^2 \theta \int_0^x [f_{\theta}(x) - f_{\theta}(x - z)] z^{-\alpha - 1} dz;$$

$$xf_{\theta}(x) = \theta \alpha^2 \int_0^x [F_{\theta}(x) - F_{\theta}(x - z)] z^{-\alpha - 1} dz \quad \text{for all } x > 0,$$

Outline of the proof

Similarly to CPo, write

$$\frac{d}{d\theta} \mathbf{P}(\xi_{\theta} \in B) = \int \left[\mathbf{P}(\xi_{\theta} + z \in B) - \mathbf{P}(\xi_{\theta} \in B) \right] \Lambda_{1}(dz)$$

$$= \frac{1}{\theta} \int \left[\mathbf{P}(\xi_{\theta} \in B - z) - \mathbf{P}(\xi_{\theta} \in B) \right] \Lambda_{\theta}(dz)$$

and use the scaling $\xi_{\theta} \stackrel{D}{=} \theta^{1/\alpha} \xi_{1}$, so that the density and its gradient satisfy

$$f_{\theta}(x) = \theta^{-d/\alpha} f_{1}(\theta^{-1/\alpha} x),$$
$$\nabla f_{\theta}(x) = \theta^{-(n+1)/\alpha} \nabla f_{1}(\theta^{-1/\alpha} x).$$

Crofton's derivative formula

Consider m points uniformly and independently distributed in a finite volume $K \subset \mathbb{R}^n$ (Binomial point process). Assume we want to compute the probability P that these points satisfy certain property, e.g. the probability that the convex hull of m=4 points is a triangle. Now expand monotonely the domain K to $K_t \supset K$ with $\bigcap_{t>0} K_t = K$. The Crofton's derivative formula relates the new probability P_t to satisfy the property when the points are now distributed in a larger domain K_t when $t \downarrow 0$.

Intuitively, the difference in P_t and P is due to: 1) the new scale factor due to the increase of volume of the domain; and 2) new possible configurations with points in $K_t \setminus K$. In the first order approximation, only one point in $K_t \setminus K$ matters. Its distribution should depend on the exact form of the expansion of K.

Settings

We consider a compact set K and $K_t = K + b(0, t)$ – the t-parallel set of $K \subset \mathbb{R}^d$.

Let $h: \mathbb{R}^n \to [0, \infty)$ be a continuous function and let λ be the measure on \mathbb{R}^n with Lebesgue density h.

For $t \geq 0$ let λ_t be the restriction of λ to K_t and η_t be a Poisson process with intensity measure λ_t . Let \mathcal{H}^{n-1} denote the Hausdorff measure.

Crofton formula for Poisson functionals

Assume, for simplicity, that K is a body, $i. e. \operatorname{cl} \overset{\circ}{K} = K$.

If $g(\eta_t + \delta_x)$ is continuous in $x \in K_{t_0}$ for some $t_0 > 0$, and there exists c > 0 such that

$$\left| \mathbf{E} D_{x_1,\ldots,x_k}^k g(\eta_t) \right| \leq c^k, \quad x_1,\ldots,x_k \in K_{t_0}, \ t \leq t_0, \ k \in \mathbb{N}.$$

then for all $0 < t < t_0$

$$\frac{d}{dt} \mathbf{E} g(\eta_t) = \int_{\partial K_t} \mathbf{E} \left[g(\eta_t + \delta_x) - g(\eta_t) \right] h(x) \, \mathcal{H}^{n-1}(dx).$$

Under additional technical assumptions, this is also true for $K_0 = K$.

Crofton formula for Binomial process

Consider a binomial processes $BPP(m, \lambda_t)$

$$\xi_t^{(m)} = \delta_{X_1} + \cdots + \delta_{X_m},$$

where $X_i \sim \lambda_t/\lambda_t(K_t)$ are *i.i.d.* r.v.'s in \mathbb{R}^n .

If g is bounded and $x \mapsto \mathbf{E} g(\xi_t^{(m-1)} + \delta_x)$ is continuous on K_{t_0} for each $t < t_0$, then

$$\frac{d}{dt} \operatorname{\mathbf{E}} g(\xi_t^{(m)}) = \frac{m}{\lambda(K_t)} \int_{\partial K_t} \operatorname{\mathbf{E}} \left[g(\xi_t^{(m-1)} + \delta_x) - g(\xi_t^{(m)}) \right] h(x) \, \mathcal{H}^{n-1}(dx).$$

Variational analysis for Bernoulli fields
Poisson process
Applications
Stable vectors
Crofton's derivative formula

The proof uses the generalisation of the Steiner formula to non-convex sets [Hug, Last, Weil'04]. For bodies, the last theorem follows from [Baddeley'77], but we can also covers general closed sets. It this case, the integral above is over the set of $\partial^1 K$ of boundary points which have a unique outward 'normal' in the positive reach sence plus twice the integral over $\partial^2 K$ that have two normals.

References

- G. Last and S. Zuyev Applications of the perturbation formula for Poisson processes to elementary and geometric probability. http://arxiv.org/abs/1907.09552 (2019)
- S. Zuyev. Russo's Formula for the Poisson Point Processes and its Applications, Discrete Math. and Applications, 3, 63-73, (1993)
- G. Last. Perturbation analysis of Poisson processes. Bernoulli, 20(2):486–513, 2014.
- D. Hug, G. Last and W. Weil. A local Steiner-type formula for general closed sets and applications. Math. Z., 246, 237–272, 2004.
- A. Baddeley. Integrals on a moving manifold and geometrical probability. Adv. Appl. Prob., 9, 588–603, 1977.

Variational analysis for Bernoulli fields
Poisson process
Applications
Stable vectors
Crofton's derivative formula

Questions?

Sergei Zuyev

Perturbation formula in SG