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Random ±1 matrices

An old problem: Let B be an n× n random matrix with i.i.d. ±1 entries. What is

Pn := P {B is singular}?

Equivalently: Let X1,X2, . . . ,Xn be independent random vectors uniformly
distributed on the vertices of the n-dimensional cube [−1, 1]n.
What is the probability that the vectors are linearly dependent?

The trivial lower bound:

Pn ≥ P {Two rows/columns of B are equal up to a sign} ≥ (1− o(1)) 2n2 2−n.

A natural conjecture: This is the main reason for singularity.

Conjecture 1: Pn = (1/2 + o(1))n
= 2−(1+o(1))n.

Conjecture 2: Pn = (1+o(1)) 2n2 2−n.
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Known results

Komlós (67): Pn → 0.

Kahn, Komlós and Szemerédi (95): Pn ≤ 0.999n.

Tao–Vu (07): Pn ≤ (3/4 + o(1))n.

Bourgain–Vu–P.M. Wood (10): Pn ≤ (1/
√

2 + o(1))n.

K. Tikhomirov (19+): Pn ≤ (1/2 + o(1))n, solving Conjecture 1.
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Bernoulli random matrices

One can ask a similar question about Bernoulli 0/1 random matrices:

Let p ∈ (0, 1/2] and let Bp be an n× n random matrix with i.i.d. 0/1 random
variables taking value 1 with probability p. Note that Bp can be viewed as the
adjacency matrix of Erdős–Rényi graph — a random graph on n vertices whose
edges appear independently of others with probability p.
Question: What is

Pn := P {Bp is singular}?

Conjecture:

Pn = (1 + o(1))P {∃ a zero row or a zero column} = (1 + o(1)) 2n(1− p)n.

Geometrically the condition means that either ∃ a zero column or ∃ a coordinate
hyperplane such that all columns belong to it.

Many works on different models of sparse matrices (with iid entries):
Götze–A. Tikhomirov, Costello–Vu, Basak–Rudelson, Rudelson–K. Tikhomirov,
Tao–Vu.
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adjacency matrix of Erdős–Rényi graph — a random graph on n vertices whose
edges appear independently of others with probability p.
Question: What is

Pn := P {Bp is singular}?

Conjecture:

Pn = (1 + o(1))P {∃ a zero row or a zero column} = (1 + o(1)) 2n(1− p)n.

Geometrically the condition means that either ∃ a zero column or ∃ a coordinate
hyperplane such that all columns belong to it.

Many works on different models of sparse matrices (with iid entries):
Götze–A. Tikhomirov, Costello–Vu, Basak–Rudelson, Rudelson–K. Tikhomirov,
Tao–Vu.

Alexander Litvak (Univ. of Alberta) Singularity of random Bernoulli 0/1 matrices. EIMI, St. Petersburg, 2019 4 / 12



Bernoulli random matrices

Basak–Rudelson (17): Pn ≤ exp(−cnp) for p = p(n) ≥ (C ln n)/n,

moreover

P
{

sn(Bp) ≤ c exp(−C ln(1/p)/ ln(np)) t
√

p/n
}
≤ t + exp(−cnp),

where
sn(M) = inf

|x|=1
|Mx|.

K. Tikhomirov (19+): Pn ≤ (1− p + o(1))n for p ∈ (0, 1/2] (independent of n).

Moreover, ∀ε > 0, ∀n ≥ n(p, ε),

P
{

sn(Bp) ≤ t
√

p/n
}
≤ C(p, ε)t + (1− p + ε)n.
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Main result

L-K.T.
There is a (small) absolute constant c > 0 such that the following holds.
Let 0 < q < c be a parameter and q < p < c. Then,

Pn ≤ (1 + oq(1)) 2n(1− p)n.

Moreover, ∀ε > 0, ∀n ≥ n(p, ε),

P
{

sn(Bp) ≤ t n−Cq
}
≤ t + (1 + oq(1)) 2n(1− p)n.

Remark. It seems that using technique from LLTTY (Lytova, Tomczak-Jaegermann,
Youssef + LT) papers on random regular matrices one can substitute the assumption
q < p < c with C ln n

n < p < c and to remove dependence of the constants on q.
(A 0/1 matrix is regular if the sums of 1 in all columns and in all rows are the same
— it is the adjacency matrix of a regular directed graph).
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Some ideas of the proof.

It is well-understood by now that to deal with the smallest singular number one needs
to split Sn−1 into several parts and to work separately on each part.

This idea goes back to Kashin 77, where, in order obtain an orthogonal decomposition
of `n

1, he split the sphere into two classes according to the ratio of `n
1 and `n

2 norms. In
a similar context it was used by Schehtman 04.

Since we want to provide a lower bound on the smallest singular value of a random
matrix M, we need to show that |Mx| is not very small for all x ∈ Sn−1. Usually it is
done using the union bound – to prove a good probability bound for an individual
vector x and then to find a good net in order to apply approximation. The main point
is to have a good balance between the probability and the cardinality of a net.
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Some ideas of the proof.

But vectors behave differently. Consider the following example, let X = {εi} be a
Bernoulli random vector with ±1 independent entries. Then

〈X, e1 + e2〉 = ε1 + ε2 = 0 with probability 1/2.

On the other hand,

〈X,
∑

i

ei〉 =
∑

i

εi = 0 with probability at most 1/
√

n

by the Erdős–Littlewood–Offord anti-concentration lemma.

Usually, it is hard to get good individual bounds for vectors of small support,
so-called sparse vectors. However, the set of such vectors is essentially of lower
dimension, hence admit a very good net. This leads to splitting the sphere into
compressible vectors – those closed to sparse, and incompressible vectors – the rest.
For compressible vectors we have a net of small cardinality, therefore relatively poor
individual probability bounds work, while incompressible vectors are well spread and
therefore have very good anti-concentration properties. This approach was used in
L–Pajor–Rudelson–Tomczak-Jaegermann (05) for rectangular matrices and was later
developed in series of works by Rudelson–Vershynin.
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Some ideas of the proof.

For 0/1 matrices an additional problem is caused by constant vectors. Indeed, while
properly normalized centered random matrices (say with entries ±1) have norm of
order

√
n, the norm ‖Bp‖ ≈ pn.

Fortunately, this large norm is only in the direction of
1 = (1, 1, ..., 1). On the subspace orthogonal to 1 the norm is of the order

√
pn.

This leads to our splitting. The first class will be sparse vectors shifted by constants
vectors. The second class will be the remaining vectors.

For the first class standard anti-concentration technique works, since the set is
essentially of lower dimension (although there are many cases).
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Some ideas of the proof.

For the second class we show that it is contained in gradual non-constant vectors,
that is, vectors (after certain normalization and for some parameters r, δ,L, h) s.t.
1. x∗rn = 1
2. x∗i ≤ (n/i)L

3. If (yi)i is a non-increasing rearrangement of (xi)i then yδn − yn−δn ≥ h.

To work with this class we partially follow Rudelson–Vershynin scheme.
First, one reduces estimating the smallest singular number to estimating distances
between a column Xi to the span of remaining columns, say Hi, i ≤ 1.
This distance is a projection on a (random) normal vector to Hi.
Thus, we have an inner product of Xi and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner
product of a random vector with a flat vector can’t concentrate around a number).
To make this scheme work, Rudelson–Vershynin introduced LCD (least common
denominator), which, in a sense, measures how close a proportional coordinate
projection of a vector to the properly rescaled integer lattice. They also had to
develope Littlewood–Offord theory.
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Some ideas of the proof.

In our case both, the LCD, and the known anti-concentration results are not strong
enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros,
to a random 0/1 vector with prescribed number of ones, say, with m ones, where
m is of the order pn. Note that pn is an average number of ones in a Bernoulli vector.

Second idea is to substitute LCD with another parameter, which we call balancing
degree of a vector, and which is more directly related to the Esseen lemma, used to
prove an anti-concentration.

Next we have to prove a Littlewood–Offord type anti-concentration property for this
new parameter.

In particular, we also extend the Littlewood–Offord theory to the case of dependent
random variables (in our case – the coordinates of a vector with fixed number of ones).
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Balancing degree

Recall the definition of Lévy concentration function:
Q (ξ, t) = maxλ P (|ξ − λ| < t) .

Esseen Lemma (66):

Q
( m∑

i=1

ξi, τ
)
≤ C′

1∫
−1

m∏
i=1

|E exp(2πiξis/τ)| ds.

For a finite integer subset S, let η[S] denotes a r.v. uniformly distributed on S. Then

Baln(v,m,K) := sup
{

t > 0 :
1
N

∑
(S1,...,Sm)

t∫
−t

m∏
i=1

∣∣E exp
(
2πi vη[Si] m−1/2s

)∣∣ ds ≤ K
}
,

where the sum is taken over all sequences (Si)
m
i=1 of disjoint subsets S1, . . . , Sm ⊂ [n],

each of cardinality bn/mc, N is the number of such sequences, K ≥ 1 is a parameter.
We prove that

Q
( n∑

i=1

viXi,
√

m t
)
≤ C

(
t + 1/Baln(v,m,K)

)
for all t > 0,
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