Singularity of random Bernoulli 0/1 matrices

Alexander Litvak

University of Alberta

based on a work in progress with

K. Tikhomirov

EIMI, St. Petersburg, 2019

An old problem: Let *B* be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$P_n := \mathbb{P} \{ B \text{ is singular} \}?$$

An old problem: Let *B* be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$P_n := \mathbb{P} \{ B \text{ is singular} \}?$$

Equivalently: Let $X_1, X_2, ..., X_n$ be independent random vectors uniformly distributed on the vertices of the *n*-dimensional cube $[-1, 1]^n$.

An old problem: Let *B* be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$P_n := \mathbb{P} \{ B \text{ is singular} \}?$$

Equivalently: Let $X_1, X_2, ..., X_n$ be independent random vectors uniformly distributed on the vertices of the *n*-dimensional cube $[-1, 1]^n$.

What is the probability that the vectors are linearly dependent?

An old problem: Let *B* be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$P_n := \mathbb{P} \{ B \text{ is singular} \}?$$

Equivalently: Let $X_1, X_2, ..., X_n$ be independent random vectors uniformly distributed on the vertices of the *n*-dimensional cube $[-1, 1]^n$.

What is the probability that the vectors are linearly dependent?

The trivial lower bound:

 $P_n \ge \mathbb{P} \{\text{Two rows/columns of } B \text{ are equal up to a sign}\} \ge (1 - o(1)) 2n^2 2^{-n}.$

An old problem: Let *B* be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$P_n := \mathbb{P} \{ B \text{ is singular} \}?$$

Equivalently: Let $X_1, X_2, ..., X_n$ be independent random vectors uniformly distributed on the vertices of the *n*-dimensional cube $[-1, 1]^n$.

What is the probability that the vectors are linearly dependent?

The trivial lower bound:

 $P_n \ge \mathbb{P} \{\text{Two rows/columns of } B \text{ are equal up to a sign}\} \ge (1 - o(1)) 2n^2 2^{-n}.$

A natural conjecture: This is the main reason for singularity.

An old problem: Let *B* be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$P_n := \mathbb{P} \{ B \text{ is singular} \}?$$

Equivalently: Let $X_1, X_2, ..., X_n$ be independent random vectors uniformly distributed on the vertices of the *n*-dimensional cube $[-1, 1]^n$.

What is the probability that the vectors are linearly dependent?

The trivial lower bound:

 $P_n \ge \mathbb{P} \{\text{Two rows/columns of } B \text{ are equal up to a sign}\} \ge (1 - o(1)) 2n^2 2^{-n}.$

A natural conjecture: This is the main reason for singularity.

Conjecture 1:
$$P_n = (1/2 + o(1))^n = 2^{-(1+o(1))n}$$
.

An old problem: Let *B* be an $n \times n$ random matrix with i.i.d. ± 1 entries. What is

$$P_n := \mathbb{P} \{ B \text{ is singular} \}?$$

Equivalently: Let $X_1, X_2, ..., X_n$ be independent random vectors uniformly distributed on the vertices of the *n*-dimensional cube $[-1, 1]^n$.

What is the probability that the vectors are linearly dependent?

The trivial lower bound:

 $P_n \ge \mathbb{P} \{\text{Two rows/columns of } B \text{ are equal up to a sign}\} \ge (1 - o(1)) 2n^2 2^{-n}.$

A natural conjecture: This is the main reason for singularity.

Conjecture 1:
$$P_n = (1/2 + o(1))^n = 2^{-(1+o(1))n}$$
.

Conjecture 2:
$$P_n = (1+o(1)) 2n^2 2^{-n}$$
.

Komlós (67): $P_n \rightarrow 0$.

Komlós (67): $P_n \rightarrow 0$.

Kahn, Komlós and Szemerédi (95): $P_n \leq 0.999^n$.

Komlós (67): $P_n \rightarrow 0$.

Kahn, Komlós and Szemerédi (95): $P_n \leq 0.999^n$.

Tao-Vu (07): $P_n \leq (3/4 + o(1))^n$.

Komlós (67):
$$P_n \rightarrow 0$$
.

Kahn, Komlós and Szemerédi (95): $P_n \leq 0.999^n$.

Tao-Vu (07):
$$P_n \leq (3/4 + o(1))^n$$
.

Bourgain-Vu-P.M. Wood (10):
$$P_n \le (1/\sqrt{2} + o(1))^n$$
.

Komlós (67):
$$P_n \rightarrow 0$$
.

Kahn, Komlós and Szemerédi (95): $P_n \leq 0.999^n$.

Tao-Vu (07):
$$P_n \leq (3/4 + o(1))^n$$
.

Bourgain-Vu-P.M. Wood (10):
$$P_n \le (1/\sqrt{2} + o(1))^n$$
.

K. Tikhomirov (19+):
$$P_n \leq (1/2 + o(1))^n$$
, solving Conjecture 1.

One can ask a similar question about Bernoulli 0/1 random matrices:

One can ask a similar question about Bernoulli 0/1 random matrices:

Let $p \in (0, 1/2]$ and let B_p be an $n \times n$ random matrix with i.i.d. 0/1 random variables taking value 1 with probability p.

One can ask a similar question about Bernoulli 0/1 random matrices:

Let $p \in (0, 1/2]$ and let B_p be an $n \times n$ random matrix with i.i.d. 0/1 random variables taking value 1 with probability p. Note that B_p can be viewed as the adjacency matrix of Erdős–Rényi graph — a random graph on n vertices whose edges appear independently of others with probability p.

One can ask a similar question about Bernoulli 0/1 random matrices:

Let $p \in (0, 1/2]$ and let B_p be an $n \times n$ random matrix with i.i.d. 0/1 random variables taking value 1 with probability p. Note that B_p can be viewed as the adjacency matrix of Erdős–Rényi graph — a random graph on n vertices whose edges appear independently of others with probability p.

Question: What is

$$P_n := \mathbb{P} \{B_p \text{ is singular}\}?$$

One can ask a similar question about Bernoulli 0/1 random matrices:

Let $p \in (0, 1/2]$ and let B_p be an $n \times n$ random matrix with i.i.d. 0/1 random variables taking value 1 with probability p. Note that B_p can be viewed as the adjacency matrix of Erdős–Rényi graph — a random graph on n vertices whose edges appear independently of others with probability p.

Question: What is

$$P_n := \mathbb{P} \{B_p \text{ is singular}\}?$$

Conjecture:

$$P_n = (1 + o(1))\mathbb{P} \{\exists \text{ a zero row or a zero column}\} = (1 + o(1)) 2n(1 - p)^n.$$

Geometrically the condition means that either \exists a zero column or \exists a *coordinate* hyperplane such that all columns belong to it.

One can ask a similar question about Bernoulli 0/1 random matrices:

Let $p \in (0, 1/2]$ and let B_p be an $n \times n$ random matrix with i.i.d. 0/1 random variables taking value 1 with probability p. Note that B_p can be viewed as the adjacency matrix of Erdős–Rényi graph — a random graph on n vertices whose edges appear independently of others with probability p.

Question: What is

$$P_n := \mathbb{P} \{B_p \text{ is singular}\}?$$

Conjecture:

$$P_n = (1 + o(1))\mathbb{P} \{\exists \text{ a zero row or a zero column}\} = (1 + o(1)) 2n(1 - p)^n.$$

Geometrically the condition means that either \exists a zero column or \exists a *coordinate* hyperplane such that all columns belong to it.

Many works on different models of sparse matrices (with iid entries): Götze-A. Tikhomirov, Costello-Vu, Basak-Rudelson, Rudelson-K. Tikhomirov, Tao-Vu.

Basak–Rudelson (17): $P_n \le \exp(-cnp)$ for $p = p(n) \ge (C \ln n)/n$,

Basak–Rudelson (17): $P_n \le \exp(-cnp)$ for $p = p(n) \ge (C \ln n)/n$, moreover

$$\mathbb{P}\left\{s_n(B_p) \le c \exp(-C \ln(1/p)/\ln(np)) \, t \sqrt{p/n}\right\} \le t + \exp(-cnp),$$

where

$$s_n(M) = \inf_{|x|=1} |Mx|.$$

Basak–Rudelson (17): $P_n \le \exp(-cnp)$ for $p = p(n) \ge (C \ln n)/n$, moreover

$$\mathbb{P}\left\{s_n(B_p) \le c \exp(-C \ln(1/p)/\ln(np)) \, t \sqrt{p/n}\right\} \le t + \exp(-cnp),$$

where

$$s_n(M) = \inf_{|x|=1} |Mx|.$$

K. Tikhomirov (19+): $P_n \le (1 - p + o(1))^n$ for $p \in (0, 1/2]$ (independent of n).

Basak–Rudelson (17): $P_n \le \exp(-cnp)$ for $p = p(n) \ge (C \ln n)/n$, moreover

$$\mathbb{P}\left\{s_n(B_p) \le c \exp(-C \ln(1/p)/\ln(np)) t \sqrt{p/n}\right\} \le t + \exp(-cnp),$$

where

$$s_n(M) = \inf_{|x|=1} |Mx|.$$

K. Tikhomirov (19+): $P_n \le (1 - p + o(1))^n$ for $p \in (0, 1/2]$ (independent of n).

Moreover, $\forall \varepsilon > 0, \forall n \geq n(p, \varepsilon),$

$$\mathbb{P}\left\{s_n(B_p) \le t\sqrt{p/n}\right\} \le C(p,\varepsilon)t + (1-p+\varepsilon)^n.$$

Main result

L-K.T.

There is a (small) absolute constant c>0 such that the following holds. Let 0< q< c be a parameter and q< p< c. Then,

$$P_n \le (1 + o_q(1)) 2n(1 - p)^n.$$

Main result

L-K.T.

There is a (small) absolute constant c > 0 such that the following holds. Let 0 < q < c be a parameter and q . Then,

$$P_n \le (1 + o_q(1)) 2n(1-p)^n.$$

Moreover, $\forall \varepsilon > 0, \forall n \geq n(p, \varepsilon)$,

$$\mathbb{P}\left\{s_n(B_p) \le t \, n^{-C_q}\right\} \le t + (1 + o_q(1)) \, 2n(1-p)^n.$$

Main result

L-K.T.

There is a (small) absolute constant c > 0 such that the following holds. Let 0 < q < c be a parameter and q . Then,

$$P_n \le (1 + o_q(1)) 2n(1-p)^n.$$

Moreover, $\forall \varepsilon > 0, \forall n \geq n(p, \varepsilon),$

$$\mathbb{P}\left\{s_n(B_p) \le t \, n^{-C_q}\right\} \le t + (1 + o_q(1)) \, 2n(1-p)^n.$$

Remark. It seems that using technique from LLTTY (Lytova, Tomczak-Jaegermann, Youssef + LT) papers on random regular matrices one can substitute the assumption $q with <math>\frac{C \ln n}{n} and to remove dependence of the constants on <math>q$. (A 0/1 matrix is regular if the sums of 1 in all columns and in all rows are the same — it is the adjacency matrix of a regular directed graph).

It is well-understood by now that to deal with the smallest singular number one needs to split S^{n-1} into several parts and to work separately on each part.

It is well-understood by now that to deal with the smallest singular number one needs to split S^{n-1} into several parts and to work separately on each part.

This idea goes back to Kashin 77, where, in order obtain an orthogonal decomposition of ℓ_1^n , he split the sphere into two classes according to the ratio of ℓ_1^n and ℓ_2^n norms. In a similar context it was used by Schehtman 04.

It is well-understood by now that to deal with the smallest singular number one needs to split S^{n-1} into several parts and to work separately on each part.

This idea goes back to Kashin 77, where, in order obtain an orthogonal decomposition of ℓ_1^n , he split the sphere into two classes according to the ratio of ℓ_1^n and ℓ_2^n norms. In a similar context it was used by Schehtman 04.

Since we want to provide a lower bound on the smallest singular value of a random matrix M, we need to show that |Mx| is not very small for all $x \in S^{n-1}$. Usually it is done using the union bound – to prove a good probability bound for an individual vector x and then to find a good net in order to apply approximation. The main point is to have a good balance between the probability and the cardinality of a net.

But vectors behave differently. Consider the following example, let $X = \{\varepsilon_i\}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$\langle X, e_1 + e_2 \rangle = \varepsilon_1 + \varepsilon_2 = 0$$
 with probability 1/2.

On the other hand,

$$\langle X, \sum_{i} e_i \rangle = \sum_{i} \varepsilon_i = 0$$
 with probability at most $1/\sqrt{n}$

by the Erdős-Littlewood-Offord anti-concentration lemma.

But vectors behave differently. Consider the following example, let $X = \{\varepsilon_i\}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$\langle X, e_1 + e_2 \rangle = \varepsilon_1 + \varepsilon_2 = 0$$
 with probability 1/2.

On the other hand,

$$\langle X, \sum_i e_i \rangle = \sum_i \varepsilon_i = 0$$
 with probability at most $1/\sqrt{n}$

by the Erdős-Littlewood-Offord anti-concentration lemma.

Usually, it is hard to get good individual bounds for vectors of small support, so-called *sparse vectors*.

But vectors behave differently. Consider the following example, let $X = \{\varepsilon_i\}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$\langle X, e_1 + e_2 \rangle = \varepsilon_1 + \varepsilon_2 = 0$$
 with probability 1/2.

On the other hand,

$$\langle X, \sum_i e_i \rangle = \sum_i \varepsilon_i = 0$$
 with probability at most $1/\sqrt{n}$

by the Erdős-Littlewood-Offord anti-concentration lemma.

Usually, it is hard to get good individual bounds for vectors of small support, so-called *sparse vectors*. However, the set of such vectors is essentially of lower dimension, hence admit a very good net.

But vectors behave differently. Consider the following example, let $X = \{\varepsilon_i\}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$\langle X, e_1 + e_2 \rangle = \varepsilon_1 + \varepsilon_2 = 0$$
 with probability 1/2.

On the other hand,

$$\langle X, \sum_i e_i \rangle = \sum_i \varepsilon_i = 0$$
 with probability at most $1/\sqrt{n}$

by the Erdős-Littlewood-Offord anti-concentration lemma.

Usually, it is hard to get good individual bounds for vectors of small support, so-called *sparse vectors*. However, the set of such vectors is essentially of lower dimension, hence admit a very good net. This leads to splitting the sphere into *compressible* vectors – those closed to sparse, and *incompressible* vectors – the rest.

But vectors behave differently. Consider the following example, let $X = \{\varepsilon_i\}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$\langle X, e_1 + e_2 \rangle = \varepsilon_1 + \varepsilon_2 = 0$$
 with probability 1/2.

On the other hand,

$$\langle X, \sum_{i} e_i \rangle = \sum_{i} \varepsilon_i = 0$$
 with probability at most $1/\sqrt{n}$

by the Erdős-Littlewood-Offord anti-concentration lemma.

Usually, it is hard to get good individual bounds for vectors of small support, so-called *sparse vectors*. However, the set of such vectors is essentially of lower dimension, hence admit a very good net. This leads to splitting the sphere into *compressible* vectors – those closed to sparse, and *incompressible* vectors – the rest. For compressible vectors we have a net of small cardinality, therefore relatively poor individual probability bounds work, while incompressible vectors are well spread and therefore have very good anti-concentration properties.

But vectors behave differently. Consider the following example, let $X = \{\varepsilon_i\}$ be a Bernoulli random vector with ± 1 independent entries. Then

$$\langle X, e_1 + e_2 \rangle = \varepsilon_1 + \varepsilon_2 = 0$$
 with probability 1/2.

On the other hand,

$$\langle X, \sum_{i} e_i \rangle = \sum_{i} \varepsilon_i = 0$$
 with probability at most $1/\sqrt{n}$

by the Erdős-Littlewood-Offord anti-concentration lemma.

Usually, it is hard to get good individual bounds for vectors of small support, so-called *sparse vectors*. However, the set of such vectors is essentially of lower dimension, hence admit a very good net. This leads to splitting the sphere into *compressible* vectors – those closed to sparse, and *incompressible* vectors – the rest. For compressible vectors we have a net of small cardinality, therefore relatively poor individual probability bounds work, while incompressible vectors are well spread and therefore have very good anti-concentration properties. This approach was used in L-Pajor-Rudelson-Tomczak-Jaegermann (05) for rectangular matrices and was later developed in series of works by Rudelson-Vershynin.

For 0/1 matrices an additional problem is caused by constant vectors. Indeed, while properly normalized centered random matrices (say with entries ± 1) have norm of order \sqrt{n} , the norm $\|B_p\| \approx pn$.

For 0/1 matrices an additional problem is caused by constant vectors. Indeed, while properly normalized centered random matrices (say with entries ± 1) have norm of order \sqrt{n} , the norm $\|B_p\| \approx pn$. Fortunately, this large norm is only in the direction of $\mathbf{1} = (1, 1, ..., 1)$. On the subspace orthogonal to $\mathbf{1}$ the norm is of the order \sqrt{pn} .

For 0/1 matrices an additional problem is caused by constant vectors. Indeed, while properly normalized centered random matrices (say with entries ± 1) have norm of order \sqrt{n} , the norm $\|B_p\| \approx pn$. Fortunately, this large norm is only in the direction of $\mathbf{1} = (1, 1, ..., 1)$. On the subspace orthogonal to $\mathbf{1}$ the norm is of the order \sqrt{pn} .

This leads to our splitting. The first class will be sparse vectors shifted by constants vectors. The second class will be the remaining vectors.

For 0/1 matrices an additional problem is caused by constant vectors. Indeed, while properly normalized centered random matrices (say with entries ± 1) have norm of order \sqrt{n} , the norm $\|B_p\| \approx pn$. Fortunately, this large norm is only in the direction of $\mathbf{1} = (1, 1, ..., 1)$. On the subspace orthogonal to $\mathbf{1}$ the norm is of the order \sqrt{pn} .

This leads to our splitting. The first class will be sparse vectors shifted by constants vectors. The second class will be the remaining vectors.

For the first class standard anti-concentration technique works, since the set is essentially of lower dimension (although there are many cases).

For the second class we show that it is contained in *gradual non-constant vectors*, that is, vectors (after certain normalization and for some parameters r, δ , L, h) s.t.

- 1. $x_{rn}^* = 1$
- **2.** $x_i^* \leq (n/i)^L$
- **3.** If $(y_i)_i$ is a non-increasing rearrangement of $(x_i)_i$ then $y_{\delta n} y_{n-\delta n} \ge h$.

For the second class we show that it is contained in *gradual non-constant vectors*, that is, vectors (after certain normalization and for some parameters r, δ , L, h) s.t.

- 1. $x_{rn}^* = 1$
- **2.** $x_i^* \leq (n/i)^L$
- **3.** If $(y_i)_i$ is a non-increasing rearrangement of $(x_i)_i$ then $y_{\delta n} y_{n-\delta n} \ge h$.

To work with this class we partially follow Rudelson-Vershynin scheme.

For the second class we show that it is contained in *gradual non-constant vectors*, that is, vectors (after certain normalization and for some parameters r, δ , L, h) s.t.

- 1. $x_{rn}^* = 1$
- **2.** $x_i^* \leq (n/i)^L$
- **3.** If $(y_i)_i$ is a non-increasing rearrangement of $(x_i)_i$ then $y_{\delta n} y_{n-\delta n} \ge h$.

To work with this class we partially follow Rudelson-Vershynin scheme.

First, one reduces estimating the smallest singular number to estimating distances between a column X_i to the span of remaining columns, say H_i , $i \le 1$.

For the second class we show that it is contained in *gradual non-constant vectors*, that is, vectors (after certain normalization and for some parameters r, δ , L, h) s.t.

- 1. $x_{rn}^* = 1$
- **2.** $x_i^* \leq (n/i)^L$
- **3.** If $(y_i)_i$ is a non-increasing rearrangement of $(x_i)_i$ then $y_{\delta n} y_{n-\delta n} \ge h$.

To work with this class we partially follow Rudelson-Vershynin scheme.

First, one reduces estimating the smallest singular number to estimating distances between a column X_i to the span of remaining columns, say H_i , $i \le 1$.

This distance is a projection on a (random) normal vector to H_i .

For the second class we show that it is contained in *gradual non-constant vectors*, that is, vectors (after certain normalization and for some parameters r, δ , L, h) s.t.

- 1. $x_{rn}^* = 1$
- **2.** $x_i^* \leq (n/i)^L$
- **3.** If $(y_i)_i$ is a non-increasing rearrangement of $(x_i)_i$ then $y_{\delta n} y_{n-\delta n} \ge h$.

To work with this class we partially follow Rudelson-Vershynin scheme.

First, one reduces estimating the smallest singular number to estimating distances between a column X_i to the span of remaining columns, say H_i , $i \le 1$.

This distance is a projection on a (random) normal vector to H_i .

Thus, we have an inner product of X_i and the normal (note that they are independent).

For the second class we show that it is contained in *gradual non-constant vectors*, that is, vectors (after certain normalization and for some parameters r, δ , L, h) s.t.

- 1. $x_{rn}^* = 1$
- **2.** $x_i^* \leq (n/i)^L$
- **3.** If $(y_i)_i$ is a non-increasing rearrangement of $(x_i)_i$ then $y_{\delta n} y_{n-\delta n} \ge h$.

To work with this class we partially follow Rudelson-Vershynin scheme.

First, one reduces estimating the smallest singular number to estimating distances between a column X_i to the span of remaining columns, say H_i , $i \le 1$.

This distance is a projection on a (random) normal vector to H_i .

Thus, we have an inner product of X_i and the normal (note that they are independent).

Then we apply an anti-concentration property (such a property says that an inner product of a random vector with a flat vector can't concentrate around a number).

For the second class we show that it is contained in *gradual non-constant vectors*, that is, vectors (after certain normalization and for some parameters r, δ , L, h) s.t.

- 1. $x_{rn}^* = 1$
- **2.** $x_i^* \leq (n/i)^L$
- **3.** If $(y_i)_i$ is a non-increasing rearrangement of $(x_i)_i$ then $y_{\delta n} y_{n-\delta n} \ge h$.

To work with this class we partially follow Rudelson-Vershynin scheme.

First, one reduces estimating the smallest singular number to estimating distances between a column X_i to the span of remaining columns, say H_i , $i \le 1$.

This distance is a projection on a (random) normal vector to H_i .

Thus, we have an inner product of X_i and the normal (note that they are independent).

Then we apply an anti-concentration property (such a property says that an inner product of a random vector with a flat vector can't concentrate around a number).

To make this scheme work, Rudelson–Vershynin introduced LCD (*least common denominator*), which, in a sense, measures how close a proportional coordinate projection of a vector to the properly rescaled integer lattice. They also had to develope Littlewood–Offord theory.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros, to a random 0/1 vector with prescribed number of ones, say, with m ones, where m is of the order pn. Note that pn is an average number of ones in a Bernoulli vector.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros, to a random 0/1 vector with prescribed number of ones, say, with m ones, where m is of the order pn. Note that pn is an average number of ones in a Bernoulli vector.

Second idea is to substitute LCD with another parameter, which we call balancing degree of a vector, and which is more directly related to the Esseen lemma, used to prove an anti-concentration.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros, to a random 0/1 vector with prescribed number of ones, say, with m ones, where m is of the order pn. Note that pn is an average number of ones in a Bernoulli vector.

Second idea is to substitute LCD with another parameter, which we call balancing degree of a vector, and which is more directly related to the Esseen lemma, used to prove an anti-concentration.

Next we have to prove a Littlewood–Offord type anti-concentration property for this new parameter.

In our case both, the LCD, and the known anti-concentration results are not strong enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros, to a random 0/1 vector with prescribed number of ones, say, with m ones, where m is of the order pn. Note that pn is an average number of ones in a Bernoulli vector.

Second idea is to substitute LCD with another parameter, which we call balancing degree of a vector, and which is more directly related to the Esseen lemma, used to prove an anti-concentration.

Next we have to prove a Littlewood–Offord type anti-concentration property for this new parameter.

In particular, we also extend the Littlewood–Offord theory to the case of dependent random variables (in our case – the coordinates of a vector with fixed number of ones).

Recall the definition of Lévy concentration function:

$$Q\left(\xi,t\right) = \max_{\lambda} \mathbb{P}\left(\left|\xi - \lambda\right| < t\right).$$

Recall the definition of Lévy concentration function:

$$Q(\xi, t) = \max_{\lambda} \mathbb{P}(|\xi - \lambda| < t).$$

Esseen Lemma (66):

$$\mathcal{Q}\Big(\sum_{i=1}^m \xi_i, \tau\Big) \leq C' \int_{-1}^1 \prod_{i=1}^m |\mathbb{E} \exp(2\pi \mathbf{i} \xi_i s/\tau)| \, ds.$$

Recall the definition of Lévy concentration function:

$$Q(\xi, t) = \max_{\lambda} \mathbb{P}(|\xi - \lambda| < t).$$

Esseen Lemma (66):

$$\mathcal{Q}\Big(\sum_{i=1}^m \xi_i, \tau\Big) \leq C' \int_{-1}^1 \prod_{i=1}^m |\mathbb{E} \exp(2\pi \mathbf{i} \xi_i s/\tau)| \, ds.$$

For a finite integer subset S, let $\eta[S]$ denotes a r.v. uniformly distributed on S.

Recall the definition of Lévy concentration function:

$$Q(\xi, t) = \max_{\lambda} \mathbb{P}(|\xi - \lambda| < t).$$

Esseen Lemma (66):

$$\mathcal{Q}\Big(\sum_{i=1}^m \xi_i, \tau\Big) \leq C' \int_{-1}^1 \prod_{i=1}^m |\mathbb{E} \exp(2\pi \mathbf{i} \xi_i s/\tau)| \, ds.$$

For a finite integer subset S, let $\eta[S]$ denotes a r.v. uniformly distributed on S. Then

$$\mathbf{Bal}_{n}(v, m, K) := \sup \left\{ t > 0 : \ \frac{1}{N} \sum_{(S_{1}, \dots, S_{m})} \int_{-t}^{t} \prod_{i=1}^{m} \left| \mathbb{E} \exp \left(2\pi \mathbf{i} \, v_{\eta[S_{i}]} \, m^{-1/2} s \right) \right| \, ds \leq K \right\},$$

where the sum is taken over all sequences $(S_i)_{i=1}^m$ of disjoint subsets $S_1, \ldots, S_m \subset [n]$, each of cardinality $\lfloor n/m \rfloor$, N is the number of such sequences, $K \geq 1$ is a parameter.

Recall the definition of Lévy concentration function:

$$Q(\xi, t) = \max_{\lambda} \mathbb{P}(|\xi - \lambda| < t).$$

Esseen Lemma (66):

$$\mathcal{Q}\Big(\sum_{i=1}^m \xi_i, \tau\Big) \leq C' \int_{-1}^1 \prod_{i=1}^m |\mathbb{E} \exp(2\pi \mathbf{i} \xi_i s/\tau)| \, ds.$$

For a finite integer subset S, let $\eta[S]$ denotes a r.v. uniformly distributed on S. Then

$$\mathbf{Bal}_{n}(v, m, K) := \sup \left\{ t > 0 : \ \frac{1}{N} \sum_{(S_{1}, \dots, S_{m})} \int_{-t}^{t} \prod_{i=1}^{m} \left| \mathbb{E} \exp \left(2\pi \mathbf{i} \, v_{\eta[S_{i}]} \, m^{-1/2} s \right) \right| \, ds \leq K \right\},$$

where the sum is taken over all sequences $(S_i)_{i=1}^m$ of disjoint subsets $S_1, \ldots, S_m \subset [n]$, each of cardinality $\lfloor n/m \rfloor$, N is the number of such sequences, $K \ge 1$ is a parameter. We prove that

$$Q\left(\sum_{i=1}^{n} v_{i}X_{i}, \sqrt{m}t\right) \leq C\left(t + 1/\mathbf{Bal}_{n}(v, m, K)\right) \quad \text{for all } t > 0,$$